Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 165320 by mnjuly1970 last updated on 29/Jan/22

  Ω = ∫_0 ^( (π/4))  cos (2x ).e^( ⌊ sin(x)+ cos(x) ⌋) dx     ⌊ x ⌋= max { m ∈ Z ∣  m ≤ x }          −−−−

$$ \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \:{cos}\:\left(\mathrm{2}{x}\:\right).{e}^{\:\lfloor\:{sin}\left({x}\right)+\:{cos}\left({x}\right)\:\rfloor} {dx} \\ $$$$\:\:\:\lfloor\:{x}\:\rfloor=\:{max}\:\left\{\:{m}\:\in\:\mathbb{Z}\:\mid\:\:{m}\:\leqslant\:{x}\:\right\} \\ $$$$\:\:\:\:\:\:\:\:−−−− \\ $$

Answered by mahdipoor last updated on 30/Jan/22

sinx+cosx=(√2)sin((π/4)+x)=A  0≤x≤(π/4) ⇒ 1≤A≤(√2) ⇒ ⌊A⌋=1  Ω=∫_0 ^(π/4) cos(2x).e^1 .dx=e[((sin(2x))/2)]_0 ^(π/4) =(e/2)

$${sinx}+{cosx}=\sqrt{\mathrm{2}}{sin}\left(\frac{\pi}{\mathrm{4}}+{x}\right)={A} \\ $$$$\mathrm{0}\leqslant{x}\leqslant\frac{\pi}{\mathrm{4}}\:\Rightarrow\:\mathrm{1}\leqslant{A}\leqslant\sqrt{\mathrm{2}}\:\Rightarrow\:\lfloor{A}\rfloor=\mathrm{1} \\ $$$$\Omega=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {cos}\left(\mathrm{2}{x}\right).{e}^{\mathrm{1}} .{dx}={e}\left[\frac{{sin}\left(\mathrm{2}{x}\right)}{\mathrm{2}}\right]_{\mathrm{0}} ^{\pi/\mathrm{4}} =\frac{{e}}{\mathrm{2}} \\ $$

Commented by mnjuly1970 last updated on 30/Jan/22

  mamnoon jenabe mahdipoor     very nice solution

$$\:\:{mamnoon}\:{jenabe}\:{mahdipoor} \\ $$$$\:\:\:{very}\:{nice}\:{solution} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com