Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 163736 by HongKing last updated on 09/Jan/22

Answered by mr W last updated on 10/Jan/22

Commented by mr W last updated on 10/Jan/22

R=(a/(2 sin A))  Δ=((bc sin A)/2)  r=((2Δ)/(a+b+c))=((bc sin A)/(a+b+c))  OI//AB ⇔ R cos A=r  (a/(2 sin A)) cos A=((bc sin A)/(a+b+c))  cos A=((2bc sin^2  A)/(a(a+b+c)))  cos A=((2bc(1−cos A)(1+cos A))/(a(a+b+c)))  ((b^2 +c^2 −a^2 )/(2bc))=((2bc(1−((b^2 +c^2 −a^2 )/(2bc)))(1+((b^2 +c^2 −a^2 )/(2bc))))/(a(a+b+c)))  b^2 +c^2 −a^2 =(([a^2 −(b−c)^2 ][(b+c)^2 −a^2 ])/(a(a+b+c)))  b^2 +c^2 −a^2 =(([a^2 −(b−c)^2 ](b+c−a))/a)  (b+c)a^2 −2bca−(b^2 −c^2 )(b−c)=0  a=((bc+(√(b^2 c^2 +(b+c)(b^2 −c^2 )(b−c))))/(b+c))  a=((bc+(√(b^2 c^2 +(b^2 −c^2 )^2 )))/(b+c))  ⇒a=((bc+(√(b^4 +c^4 −b^2 c^2 )))/(b+c)) ✓

$${R}=\frac{{a}}{\mathrm{2}\:\mathrm{sin}\:{A}} \\ $$$$\Delta=\frac{{bc}\:\mathrm{sin}\:{A}}{\mathrm{2}} \\ $$$${r}=\frac{\mathrm{2}\Delta}{{a}+{b}+{c}}=\frac{{bc}\:\mathrm{sin}\:{A}}{{a}+{b}+{c}} \\ $$$$\boldsymbol{{OI}}//\boldsymbol{{AB}}\:\Leftrightarrow\:\boldsymbol{{R}}\:\boldsymbol{\mathrm{cos}}\:\boldsymbol{{A}}=\boldsymbol{{r}} \\ $$$$\frac{{a}}{\mathrm{2}\:\mathrm{sin}\:{A}}\:\mathrm{cos}\:{A}=\frac{{bc}\:\mathrm{sin}\:{A}}{{a}+{b}+{c}} \\ $$$$\mathrm{cos}\:{A}=\frac{\mathrm{2}{bc}\:\mathrm{sin}^{\mathrm{2}} \:{A}}{{a}\left({a}+{b}+{c}\right)} \\ $$$$\mathrm{cos}\:{A}=\frac{\mathrm{2}{bc}\left(\mathrm{1}−\mathrm{cos}\:{A}\right)\left(\mathrm{1}+\mathrm{cos}\:{A}\right)}{{a}\left({a}+{b}+{c}\right)} \\ $$$$\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{bc}}=\frac{\mathrm{2}{bc}\left(\mathrm{1}−\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{bc}}\right)\left(\mathrm{1}+\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{bc}}\right)}{{a}\left({a}+{b}+{c}\right)} \\ $$$${b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} =\frac{\left[{a}^{\mathrm{2}} −\left({b}−{c}\right)^{\mathrm{2}} \right]\left[\left({b}+{c}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} \right]}{{a}\left({a}+{b}+{c}\right)} \\ $$$${b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} =\frac{\left[{a}^{\mathrm{2}} −\left({b}−{c}\right)^{\mathrm{2}} \right]\left({b}+{c}−{a}\right)}{{a}} \\ $$$$\left({b}+{c}\right){a}^{\mathrm{2}} −\mathrm{2}{bca}−\left({b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)\left({b}−{c}\right)=\mathrm{0} \\ $$$${a}=\frac{{bc}+\sqrt{{b}^{\mathrm{2}} {c}^{\mathrm{2}} +\left({b}+{c}\right)\left({b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)\left({b}−{c}\right)}}{{b}+{c}} \\ $$$${a}=\frac{{bc}+\sqrt{{b}^{\mathrm{2}} {c}^{\mathrm{2}} +\left({b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)^{\mathrm{2}} }}{{b}+{c}} \\ $$$$\Rightarrow{a}=\frac{{bc}+\sqrt{{b}^{\mathrm{4}} +{c}^{\mathrm{4}} −{b}^{\mathrm{2}} {c}^{\mathrm{2}} }}{{b}+{c}}\:\checkmark \\ $$

Commented by Tawa11 last updated on 10/Jan/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Commented by HongKing last updated on 10/Jan/22

very nice my dear Sir thank you so much

$$\mathrm{very}\:\mathrm{nice}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com