Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 163437 by cortano1 last updated on 07/Jan/22

Commented by mr W last updated on 07/Jan/22

m^3 +n^3 +p^3 =(((13))^(1/3) )^3 +(((53))^(1/3) )^3 +(((103))^(1/3) )^3 −3×(1/3)  =13+53+103−1=168

$${m}^{\mathrm{3}} +{n}^{\mathrm{3}} +{p}^{\mathrm{3}} =\left(\sqrt[{\mathrm{3}}]{\mathrm{13}}\right)^{\mathrm{3}} +\left(\sqrt[{\mathrm{3}}]{\mathrm{53}}\right)^{\mathrm{3}} +\left(\sqrt[{\mathrm{3}}]{\mathrm{103}}\right)^{\mathrm{3}} −\mathrm{3}×\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$=\mathrm{13}+\mathrm{53}+\mathrm{103}−\mathrm{1}=\mathrm{168} \\ $$

Commented by cortano1 last updated on 07/Jan/22

what the formula?

$${what}\:{the}\:{formula}? \\ $$

Answered by mr W last updated on 07/Jan/22

say m,n,p are the roots of eqn.  (x−α)(x−β)(x−γ)=δ, i.e.  x^3 −(α+β+γ)x^2 +(αβ+βγ+γα)x+(αβγ−δ)=0  then we have  m+n+p=α+β+γ  mn+np+pm=αβ+βγ+γα  mnp=αβγ−δ  (m+n+p)^2 =m^2 +n^2 +p^2 +2(mn+np+pm)  (α+β+γ)^2 =α^2 +β^2 +γ^2 +2(αβ+βγ+γα)  ⇒m^2 +n^2 +p^2 =α^2 +β^2 +γ^2   ⇒(m^2 +n^2 +p^2 )(m+n+p)=(α^2 +β^2 +γ^2 )(α+α+γ)  ⇒m^3 +n^3 +p^3 +(m+n+p)(mn+np+pm)−3mnp=α^3 +β^3 +β^3 +(α+β+γ)(αβ+βγ+γα)−3αβγ  ⇒m^3 +n^3 +p^3 −3mnp=α^3 +β^3 +β^3 −3αβγ  ⇒m^3 +n^3 +p^3 −3(αβγ−δ)=α^3 +β^3 +β^3 −3αβγ  ⇒m^3 +n^3 +p^3 =α^3 +β^3 +β^3 −3δ  with α=((13))^(1/3) , β=((53))^(1/3) , γ=((103))^(1/3) , δ=(1/3)  ⇒m^3 +n^3 +p^3 =(((13))^(1/3) )^3 +(((53))^(1/3) )^3 +(((103))^(1/3) )^3  −3×(1/3)  ⇒m^3 +n^3 +p^3 =13+53+103 −1=168 ■

$${say}\:{m},{n},{p}\:{are}\:{the}\:{roots}\:{of}\:{eqn}. \\ $$$$\left({x}−\alpha\right)\left({x}−\beta\right)\left({x}−\gamma\right)=\delta,\:{i}.{e}. \\ $$$${x}^{\mathrm{3}} −\left(\alpha+\beta+\gamma\right){x}^{\mathrm{2}} +\left(\alpha\beta+\beta\gamma+\gamma\alpha\right){x}+\left(\alpha\beta\gamma−\delta\right)=\mathrm{0} \\ $$$${then}\:{we}\:{have} \\ $$$${m}+{n}+{p}=\alpha+\beta+\gamma \\ $$$${mn}+{np}+{pm}=\alpha\beta+\beta\gamma+\gamma\alpha \\ $$$${mnp}=\alpha\beta\gamma−\delta \\ $$$$\left({m}+{n}+{p}\right)^{\mathrm{2}} ={m}^{\mathrm{2}} +{n}^{\mathrm{2}} +{p}^{\mathrm{2}} +\mathrm{2}\left({mn}+{np}+{pm}\right) \\ $$$$\left(\alpha+\beta+\gamma\right)^{\mathrm{2}} =\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} +\mathrm{2}\left(\alpha\beta+\beta\gamma+\gamma\alpha\right) \\ $$$$\Rightarrow{m}^{\mathrm{2}} +{n}^{\mathrm{2}} +{p}^{\mathrm{2}} =\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} \\ $$$$\Rightarrow\left({m}^{\mathrm{2}} +{n}^{\mathrm{2}} +{p}^{\mathrm{2}} \right)\left({m}+{n}+{p}\right)=\left(\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} \right)\left(\alpha+\alpha+\gamma\right) \\ $$$$\Rightarrow{m}^{\mathrm{3}} +{n}^{\mathrm{3}} +{p}^{\mathrm{3}} +\left({m}+{n}+{p}\right)\left({mn}+{np}+{pm}\right)−\mathrm{3}{mnp}=\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} +\beta^{\mathrm{3}} +\left(\alpha+\beta+\gamma\right)\left(\alpha\beta+\beta\gamma+\gamma\alpha\right)−\mathrm{3}\alpha\beta\gamma \\ $$$$\Rightarrow{m}^{\mathrm{3}} +{n}^{\mathrm{3}} +{p}^{\mathrm{3}} −\mathrm{3}{mnp}=\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} +\beta^{\mathrm{3}} −\mathrm{3}\alpha\beta\gamma \\ $$$$\Rightarrow{m}^{\mathrm{3}} +{n}^{\mathrm{3}} +{p}^{\mathrm{3}} −\mathrm{3}\left(\alpha\beta\gamma−\delta\right)=\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} +\beta^{\mathrm{3}} −\mathrm{3}\alpha\beta\gamma \\ $$$$\Rightarrow{m}^{\mathrm{3}} +{n}^{\mathrm{3}} +{p}^{\mathrm{3}} =\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} +\beta^{\mathrm{3}} −\mathrm{3}\delta \\ $$$${with}\:\alpha=\sqrt[{\mathrm{3}}]{\mathrm{13}},\:\beta=\sqrt[{\mathrm{3}}]{\mathrm{53}},\:\gamma=\sqrt[{\mathrm{3}}]{\mathrm{103}},\:\delta=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow{m}^{\mathrm{3}} +{n}^{\mathrm{3}} +{p}^{\mathrm{3}} =\left(\sqrt[{\mathrm{3}}]{\mathrm{13}}\right)^{\mathrm{3}} +\left(\sqrt[{\mathrm{3}}]{\mathrm{53}}\right)^{\mathrm{3}} +\left(\sqrt[{\mathrm{3}}]{\mathrm{103}}\right)^{\mathrm{3}} \:−\mathrm{3}×\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow{m}^{\mathrm{3}} +{n}^{\mathrm{3}} +{p}^{\mathrm{3}} =\mathrm{13}+\mathrm{53}+\mathrm{103}\:−\mathrm{1}=\mathrm{168}\:\blacksquare \\ $$

Commented by Tawa11 last updated on 07/Jan/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Commented by cortano1 last updated on 07/Jan/22

very nice

$${very}\:{nice} \\ $$

Commented by peter frank last updated on 07/Jan/22

great

$$\mathrm{great} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com