Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 161697 by mnjuly1970 last updated on 21/Dec/21

Answered by aleks041103 last updated on 21/Dec/21

let n=⌊x⌋ and r=x−⌊x⌋⇒0≤r<1  ⇒0≤(√r)<1  (√(2n+r))−(√r)=1  ⇒(√(2n+r))=1+(√r)  ⇒1≤(√(2n+r))<2  ⇒1≤2n+r<4  Onviously n=1.  ⇒(√(2+r))−(√r)=1  ⇒2+r=1+r+2(√r)  ⇒1=2(√r)⇒r=(1/4)  ⇒x=1.25  (√(1+1.25))−(√(0.25))=1.5−0.5=1    Ans. x=1.25

$${let}\:{n}=\lfloor{x}\rfloor\:{and}\:{r}={x}−\lfloor{x}\rfloor\Rightarrow\mathrm{0}\leqslant{r}<\mathrm{1} \\ $$$$\Rightarrow\mathrm{0}\leqslant\sqrt{{r}}<\mathrm{1} \\ $$$$\sqrt{\mathrm{2}{n}+{r}}−\sqrt{{r}}=\mathrm{1} \\ $$$$\Rightarrow\sqrt{\mathrm{2}{n}+{r}}=\mathrm{1}+\sqrt{{r}} \\ $$$$\Rightarrow\mathrm{1}\leqslant\sqrt{\mathrm{2}{n}+{r}}<\mathrm{2} \\ $$$$\Rightarrow\mathrm{1}\leqslant\mathrm{2}{n}+{r}<\mathrm{4} \\ $$$${Onviously}\:{n}=\mathrm{1}. \\ $$$$\Rightarrow\sqrt{\mathrm{2}+{r}}−\sqrt{{r}}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{2}+{r}=\mathrm{1}+{r}+\mathrm{2}\sqrt{{r}} \\ $$$$\Rightarrow\mathrm{1}=\mathrm{2}\sqrt{{r}}\Rightarrow{r}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\Rightarrow{x}=\mathrm{1}.\mathrm{25} \\ $$$$\sqrt{\mathrm{1}+\mathrm{1}.\mathrm{25}}−\sqrt{\mathrm{0}.\mathrm{25}}=\mathrm{1}.\mathrm{5}−\mathrm{0}.\mathrm{5}=\mathrm{1} \\ $$$$ \\ $$$${Ans}.\:{x}=\mathrm{1}.\mathrm{25} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com