Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 161671 by saly last updated on 21/Dec/21

Commented by saly last updated on 21/Dec/21

    Do you help me?

$$\:\:\:\:{Do}\:{you}\:{help}\:{me}? \\ $$

Answered by Rasheed.Sindhi last updated on 21/Dec/21

log_9 x+(1/(log_9 x^2  ))=1  log_9 x ∙ log_9 x^2 −log_9 x^2 +1=0  log_9 x=y  log_9 x^2 =2log_9 x=2y  y.2y−2y+1=0  2y^2 −2y+1=0  y=((2±(√(4−8)))/4)  log_9 x=((2±2i)/4)=((1±i)/2)  x=9^((1±i)/2) =3^(1±i)   x=3^(1+i)  , 3^(1−i)

$$\mathrm{log}_{\mathrm{9}} {x}+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{9}} {x}^{\mathrm{2}} \:}=\mathrm{1} \\ $$$$\mathrm{log}_{\mathrm{9}} {x}\:\centerdot\:\mathrm{log}_{\mathrm{9}} {x}^{\mathrm{2}} −\mathrm{log}_{\mathrm{9}} {x}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{log}_{\mathrm{9}} {x}={y} \\ $$$$\mathrm{log}_{\mathrm{9}} {x}^{\mathrm{2}} =\mathrm{2log}_{\mathrm{9}} {x}=\mathrm{2}{y} \\ $$$${y}.\mathrm{2}{y}−\mathrm{2}{y}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{2}{y}^{\mathrm{2}} −\mathrm{2}{y}+\mathrm{1}=\mathrm{0} \\ $$$${y}=\frac{\mathrm{2}\pm\sqrt{\mathrm{4}−\mathrm{8}}}{\mathrm{4}} \\ $$$$\mathrm{log}_{\mathrm{9}} {x}=\frac{\mathrm{2}\pm\mathrm{2}{i}}{\mathrm{4}}=\frac{\mathrm{1}\pm{i}}{\mathrm{2}} \\ $$$${x}=\mathrm{9}^{\frac{\mathrm{1}\pm{i}}{\mathrm{2}}} =\mathrm{3}^{\mathrm{1}\pm{i}} \\ $$$${x}=\mathrm{3}^{\mathrm{1}+{i}} \:,\:\mathrm{3}^{\mathrm{1}−{i}} \\ $$

Answered by cortano last updated on 21/Dec/21

 log _9 (x)+log _((x^2 )) (9) =1   log _9 (x)+(1/(2log _9 (x))) =1   [ log _9 (x)=y , x>0 &x≠1 ]   y+(1/(2y))=1⇒2y^2 −2y+1=0   y^2 −y+(1/2)=0   (y−(1/2))^2 +(1/4)=0   no solution

$$\:\mathrm{log}\:_{\mathrm{9}} \left({x}\right)+\mathrm{log}\:_{\left({x}^{\mathrm{2}} \right)} \left(\mathrm{9}\right)\:=\mathrm{1} \\ $$$$\:\mathrm{log}\:_{\mathrm{9}} \left({x}\right)+\frac{\mathrm{1}}{\mathrm{2log}\:_{\mathrm{9}} \left({x}\right)}\:=\mathrm{1} \\ $$$$\:\left[\:\mathrm{log}\:_{\mathrm{9}} \left({x}\right)={y}\:,\:{x}>\mathrm{0}\:\&{x}\neq\mathrm{1}\:\right] \\ $$$$\:{y}+\frac{\mathrm{1}}{\mathrm{2}{y}}=\mathrm{1}\Rightarrow\mathrm{2}{y}^{\mathrm{2}} −\mathrm{2}{y}+\mathrm{1}=\mathrm{0} \\ $$$$\:{y}^{\mathrm{2}} −{y}+\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$$\:\left({y}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}=\mathrm{0} \\ $$$$\:{no}\:{solution} \\ $$

Commented by saly last updated on 21/Dec/21

    okay  , Thank you

$$\:\:\:\:{okay}\:\:,\:{Thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com