Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 158309 by cortano last updated on 02/Nov/21

y′′+y′−2y=−18te^(−2t)

$${y}''+{y}'−\mathrm{2}{y}=−\mathrm{18}{te}^{−\mathrm{2}{t}} \\ $$

Answered by TheSupreme last updated on 02/Nov/21

λ^2 +λ−2=0  λ_(1,2) =−(1/2)±((√9)/2)=−2, 1  y_0 (t)=c_1 e^t +c_2 e^(−2t)   y^∼ =(At)e^(−2t)   y′=(−2At+A)e^(−2t)   y′′=(−2A+4At−2A)  (4At−4A−2At+A−2At)=−18  −3A=−18  A=6  y=(6t+c_1 )e^(−2t) +c_2 e^t

$$\lambda^{\mathrm{2}} +\lambda−\mathrm{2}=\mathrm{0} \\ $$$$\lambda_{\mathrm{1},\mathrm{2}} =−\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{9}}}{\mathrm{2}}=−\mathrm{2},\:\mathrm{1} \\ $$$${y}_{\mathrm{0}} \left({t}\right)={c}_{\mathrm{1}} {e}^{{t}} +{c}_{\mathrm{2}} {e}^{−\mathrm{2}{t}} \\ $$$$\overset{\sim} {{y}}=\left({At}\right){e}^{−\mathrm{2}{t}} \\ $$$${y}'=\left(−\mathrm{2}{At}+{A}\right){e}^{−\mathrm{2}{t}} \\ $$$${y}''=\left(−\mathrm{2}{A}+\mathrm{4}{At}−\mathrm{2}{A}\right) \\ $$$$\left(\mathrm{4}{At}−\mathrm{4}{A}−\mathrm{2}{At}+{A}−\mathrm{2}{At}\right)=−\mathrm{18} \\ $$$$−\mathrm{3}{A}=−\mathrm{18} \\ $$$${A}=\mathrm{6} \\ $$$${y}=\left(\mathrm{6}{t}+{c}_{\mathrm{1}} \right){e}^{−\mathrm{2}{t}} +{c}_{\mathrm{2}} {e}^{{t}} \\ $$

Answered by tounghoungko last updated on 03/Nov/21

particular integral   y_p =e^(−2t)  (At^2 +Bt)  y′_p =−2e^(−2t) (At^2 +Bt)+e^(−2t) (2At+B)  y′′_p =4e^(−2t) (At^2 +Bt)−4e^(−2t) (2At+B)+2Ae^(−2t)   comparing coefficient  −3e^(−2t) (2At+B)+2Ae^(−2t)  =−18te^(−2t)   ⇒−6Ate^(−2t) +(2A−3B)e^(−2t) =−18te^(−2t)     { ((A=3)),((B=2)) :}  ⇒y_p = e^(−2t) (3t^2 +2t) .

$${particular}\:{integral}\: \\ $$$${y}_{{p}} ={e}^{−\mathrm{2}{t}} \:\left({At}^{\mathrm{2}} +{Bt}\right) \\ $$$${y}'_{{p}} =−\mathrm{2}{e}^{−\mathrm{2}{t}} \left({At}^{\mathrm{2}} +{Bt}\right)+{e}^{−\mathrm{2}{t}} \left(\mathrm{2}{At}+{B}\right) \\ $$$${y}''_{{p}} =\mathrm{4}{e}^{−\mathrm{2}{t}} \left({At}^{\mathrm{2}} +{Bt}\right)−\mathrm{4}{e}^{−\mathrm{2}{t}} \left(\mathrm{2}{At}+{B}\right)+\mathrm{2}{Ae}^{−\mathrm{2}{t}} \\ $$$${comparing}\:{coefficient} \\ $$$$−\mathrm{3}{e}^{−\mathrm{2}{t}} \left(\mathrm{2}{At}+{B}\right)+\mathrm{2}{Ae}^{−\mathrm{2}{t}} \:=−\mathrm{18}{te}^{−\mathrm{2}{t}} \\ $$$$\Rightarrow−\mathrm{6}{Ate}^{−\mathrm{2}{t}} +\left(\mathrm{2}{A}−\mathrm{3}{B}\right){e}^{−\mathrm{2}{t}} =−\mathrm{18}{te}^{−\mathrm{2}{t}} \\ $$$$\:\begin{cases}{{A}=\mathrm{3}}\\{{B}=\mathrm{2}}\end{cases}\:\:\Rightarrow{y}_{{p}} =\:{e}^{−\mathrm{2}{t}} \left(\mathrm{3}{t}^{\mathrm{2}} +\mathrm{2}{t}\right)\:. \\ $$

Answered by qaz last updated on 03/Nov/21

y_p =(1/((D+2)(D−1)))(−18te^(−2t) )  =−18e^(−2t) (1/(D(D−3)))t  =−9e^(−2t) (1/(D−3))t^2   =3e^(−2t) (1+(D/3)+(D^2 /3^2 )+...)t^2   =3e^(−2t) (t^2 +(2/3)t+(2/9))  ⇒y=C_1 e^(−2t) +C_2 e^t +3e^(−2t) (t^2 +(2/3)t)

$$\mathrm{y}_{\mathrm{p}} =\frac{\mathrm{1}}{\left(\mathrm{D}+\mathrm{2}\right)\left(\mathrm{D}−\mathrm{1}\right)}\left(−\mathrm{18te}^{−\mathrm{2t}} \right) \\ $$$$=−\mathrm{18e}^{−\mathrm{2t}} \frac{\mathrm{1}}{\mathrm{D}\left(\mathrm{D}−\mathrm{3}\right)}\mathrm{t} \\ $$$$=−\mathrm{9e}^{−\mathrm{2t}} \frac{\mathrm{1}}{\mathrm{D}−\mathrm{3}}\mathrm{t}^{\mathrm{2}} \\ $$$$=\mathrm{3e}^{−\mathrm{2t}} \left(\mathrm{1}+\frac{\mathrm{D}}{\mathrm{3}}+\frac{\mathrm{D}^{\mathrm{2}} }{\mathrm{3}^{\mathrm{2}} }+...\right)\mathrm{t}^{\mathrm{2}} \\ $$$$=\mathrm{3e}^{−\mathrm{2t}} \left(\mathrm{t}^{\mathrm{2}} +\frac{\mathrm{2}}{\mathrm{3}}\mathrm{t}+\frac{\mathrm{2}}{\mathrm{9}}\right) \\ $$$$\Rightarrow\mathrm{y}=\mathrm{C}_{\mathrm{1}} \mathrm{e}^{−\mathrm{2t}} +\mathrm{C}_{\mathrm{2}} \mathrm{e}^{\mathrm{t}} +\mathrm{3e}^{−\mathrm{2t}} \left(\mathrm{t}^{\mathrm{2}} +\frac{\mathrm{2}}{\mathrm{3}}\mathrm{t}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com