Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 158143 by alcohol last updated on 31/Oct/21

Commented by TheHoneyCat last updated on 31/Oct/21

G_3  and G_2  are clearly isomorphical buy looking  at their respectiv tables.  we just need to map as follow:   { (1,⇆,1),(5,⇆,3),(7,⇆,5),((11),⇆,7) :}    G_1  cannot be isomorphic to either one because  3×_(10) 3=9≢1 [10]  while ∀n∈{1,5,7,11} n×_(12) n=1  and ∀n∈{1,3,5,7} n×_8 n=1

$$\mathrm{G}_{\mathrm{3}} \:\mathrm{and}\:\mathrm{G}_{\mathrm{2}} \:\mathrm{are}\:\mathrm{clearly}\:\mathrm{isomorphical}\:\mathrm{buy}\:\mathrm{looking} \\ $$$$\mathrm{at}\:\mathrm{their}\:\mathrm{respectiv}\:\mathrm{tables}. \\ $$$$\mathrm{we}\:\mathrm{just}\:\mathrm{need}\:\mathrm{to}\:\mathrm{map}\:\mathrm{as}\:\mathrm{follow}: \\ $$$$\begin{cases}{\mathrm{1}}&{\leftrightarrows}&{\mathrm{1}}\\{\mathrm{5}}&{\leftrightarrows}&{\mathrm{3}}\\{\mathrm{7}}&{\leftrightarrows}&{\mathrm{5}}\\{\mathrm{11}}&{\leftrightarrows}&{\mathrm{7}}\end{cases} \\ $$$$ \\ $$$$\mathrm{G}_{\mathrm{1}} \:\mathrm{cannot}\:\mathrm{be}\:\mathrm{isomorphic}\:\mathrm{to}\:\mathrm{either}\:\mathrm{one}\:\mathrm{because} \\ $$$$\mathrm{3}×_{\mathrm{10}} \mathrm{3}=\mathrm{9}≢\mathrm{1}\:\left[\mathrm{10}\right] \\ $$$$\mathrm{while}\:\forall{n}\in\left\{\mathrm{1},\mathrm{5},\mathrm{7},\mathrm{11}\right\}\:{n}×_{\mathrm{12}} {n}=\mathrm{1} \\ $$$$\mathrm{and}\:\forall{n}\in\left\{\mathrm{1},\mathrm{3},\mathrm{5},\mathrm{7}\right\}\:{n}×_{\mathrm{8}} {n}=\mathrm{1} \\ $$

Commented by TheHoneyCat last updated on 31/Oct/21

By definition of a group, each element has an  inverse. Let x^(−1)  be that of x for any x in the  group (you is unique since  ax=xa=e ∧ bx=xb=e ⇒ axa=bxa ⇒ a=b)    So naturaly:   a^3 =a ⇒ a^2 ×a=a ⇒a^2 ×a×a^(−1) =a×a^(−1) =e  ⇒a^2 =e

$$\mathrm{By}\:\mathrm{definition}\:\mathrm{of}\:\mathrm{a}\:\mathrm{group},\:\mathrm{each}\:\mathrm{element}\:\mathrm{has}\:\mathrm{an} \\ $$$$\mathrm{inverse}.\:\mathrm{Let}\:{x}^{−\mathrm{1}} \:\mathrm{be}\:\mathrm{that}\:\mathrm{of}\:{x}\:\mathrm{for}\:\mathrm{any}\:{x}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{group}\:\left({you}\:{is}\:{unique}\:{since}\right. \\ $$$$\left.{ax}={xa}={e}\:\wedge\:{bx}={xb}={e}\:\Rightarrow\:{axa}={bxa}\:\Rightarrow\:{a}={b}\right) \\ $$$$ \\ $$$$\mathrm{So}\:\mathrm{naturaly}:\: \\ $$$${a}^{\mathrm{3}} ={a}\:\Rightarrow\:{a}^{\mathrm{2}} ×{a}={a}\:\Rightarrow{a}^{\mathrm{2}} ×{a}×{a}^{−\mathrm{1}} ={a}×{a}^{−\mathrm{1}} ={e} \\ $$$$\Rightarrow{a}^{\mathrm{2}} ={e} \\ $$

Commented by TheHoneyCat last updated on 31/Oct/21

G_1 :   determinant ((×_(10) ,1,3,7,9),(1,1,3,7,9),(3,3,9,1,7),(7,7,1,9,3),(9,9,7,3,1))    G_2 :   determinant ((×_(12) ,1,5,7,(11)),(1,1,5,7,(11)),(5,5,1,(11),7),(7,7,(11),1,5),((11),(11),7,5,1))    G_3 :   determinant ((×_8 ,1,3,5,7),(1,1,3,5,7),(3,3,1,7,5),(5,5,7,1,3),(7,7,5,3,1))

$$\mathrm{G}_{\mathrm{1}} : \\ $$$$\begin{vmatrix}{×_{\mathrm{10}} }&{\mathrm{1}}&{\mathrm{3}}&{\mathrm{7}}&{\mathrm{9}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{3}}&{\mathrm{7}}&{\mathrm{9}}\\{\mathrm{3}}&{\mathrm{3}}&{\mathrm{9}}&{\mathrm{1}}&{\mathrm{7}}\\{\mathrm{7}}&{\mathrm{7}}&{\mathrm{1}}&{\mathrm{9}}&{\mathrm{3}}\\{\mathrm{9}}&{\mathrm{9}}&{\mathrm{7}}&{\mathrm{3}}&{\mathrm{1}}\end{vmatrix} \\ $$$$ \\ $$$$\mathrm{G}_{\mathrm{2}} : \\ $$$$\begin{vmatrix}{×_{\mathrm{12}} }&{\mathrm{1}}&{\mathrm{5}}&{\mathrm{7}}&{\mathrm{11}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{5}}&{\mathrm{7}}&{\mathrm{11}}\\{\mathrm{5}}&{\mathrm{5}}&{\mathrm{1}}&{\mathrm{11}}&{\mathrm{7}}\\{\mathrm{7}}&{\mathrm{7}}&{\mathrm{11}}&{\mathrm{1}}&{\mathrm{5}}\\{\mathrm{11}}&{\mathrm{11}}&{\mathrm{7}}&{\mathrm{5}}&{\mathrm{1}}\end{vmatrix} \\ $$$$ \\ $$$$\mathrm{G}_{\mathrm{3}} : \\ $$$$\begin{vmatrix}{×_{\mathrm{8}} }&{\mathrm{1}}&{\mathrm{3}}&{\mathrm{5}}&{\mathrm{7}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{3}}&{\mathrm{5}}&{\mathrm{7}}\\{\mathrm{3}}&{\mathrm{3}}&{\mathrm{1}}&{\mathrm{7}}&{\mathrm{5}}\\{\mathrm{5}}&{\mathrm{5}}&{\mathrm{7}}&{\mathrm{1}}&{\mathrm{3}}\\{\mathrm{7}}&{\mathrm{7}}&{\mathrm{5}}&{\mathrm{3}}&{\mathrm{1}}\end{vmatrix} \\ $$

Commented by TheHoneyCat last updated on 31/Oct/21

oups, I forgot to put the last one in blue...

Commented by phanphuoc last updated on 31/Oct/21

you can proof  : group G st ∀x∈G:x^n =e→G abel

$${you}\:{can}\:{proof}\:\::\:{group}\:{G}\:{st}\:\forall{x}\in{G}:{x}^{{n}} ={e}\rightarrow{G}\:{abel} \\ $$

Commented by TheHoneyCat last updated on 31/Oct/21

it did say "∀x" but "∃a" so I just did not assume anything

Answered by TheHoneyCat last updated on 31/Oct/21

As for the last question:  since a^3 =a ⇔ a^2 =1  we can just check the digonnal for ones    so:  a^3 =_G_1  a ⇔ a∈{1,9}  a^3 =_G_2  a ⇔ a ∈ G_2   and a^3 =_G_3  a ⇔ a ∈ G_3

$$\mathrm{As}\:\mathrm{for}\:\mathrm{the}\:\mathrm{last}\:\mathrm{question}: \\ $$$$\mathrm{since}\:{a}^{\mathrm{3}} ={a}\:\Leftrightarrow\:{a}^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{just}\:\mathrm{check}\:\mathrm{the}\:\mathrm{digonnal}\:\mathrm{for}\:\mathrm{ones} \\ $$$$ \\ $$$$\mathrm{so}: \\ $$$${a}^{\mathrm{3}} =_{\mathrm{G}_{\mathrm{1}} } {a}\:\Leftrightarrow\:{a}\in\left\{\mathrm{1},\mathrm{9}\right\} \\ $$$${a}^{\mathrm{3}} =_{\mathrm{G}_{\mathrm{2}} } {a}\:\Leftrightarrow\:{a}\:\in\:\mathrm{G}_{\mathrm{2}} \\ $$$$\mathrm{and}\:{a}^{\mathrm{3}} =_{\mathrm{G}_{\mathrm{3}} } {a}\:\Leftrightarrow\:{a}\:\in\:\mathrm{G}_{\mathrm{3}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com