Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 157870 by Odhiambojr last updated on 29/Oct/21

find the integral:  ∫{(3x+1)/(x^2 +4)}dx

$${find}\:{the}\:{integral}: \\ $$$$\int\left\{\left(\mathrm{3}{x}+\mathrm{1}\right)/\left({x}^{\mathrm{2}} +\mathrm{4}\right)\right\}{dx} \\ $$

Answered by puissant last updated on 29/Oct/21

Ω=∫ ((3x+1)/(x^2 +4))dx = ∫((3x)/(x^2 +4))dx+∫(dx/(x^2 +4))  =(3/2)∫((2x)/(x^2 +4))dx+∫(dx/(x^2 +4))  = (3/2)ln∣x^2 +4∣+(1/2)arctan((x/2))+C..

$$\Omega=\int\:\frac{\mathrm{3}{x}+\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{4}}{dx}\:=\:\int\frac{\mathrm{3}{x}}{{x}^{\mathrm{2}} +\mathrm{4}}{dx}+\int\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{4}} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}\int\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\mathrm{4}}{dx}+\int\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{4}} \\ $$$$=\:\frac{\mathrm{3}}{\mathrm{2}}{ln}\mid{x}^{\mathrm{2}} +\mathrm{4}\mid+\frac{\mathrm{1}}{\mathrm{2}}{arctan}\left(\frac{{x}}{\mathrm{2}}\right)+{C}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com