Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 157839 by gsk2684 last updated on 28/Oct/21

find the last four digits of   11^(15999) ?

$${find}\:{the}\:{last}\:{four}\:{digits}\:{of}\: \\ $$$$\mathrm{11}^{\mathrm{15999}} ? \\ $$

Answered by Rasheed.Sindhi last updated on 29/Oct/21

11^(15999) ≡x(mod 10^4 )  ∵ gcd(11,10^4 )=1  ∴ 11^(φ(10^4 )) ≡1(mod10^4 )  φ(10^4 )=4000  Least number n for which      11^n ≡1(mod 10000)  must be any divisor of φ(10^4 )=4000    Trying for n=1,2,4,...,500,800,...4000  we can see that            11^(500) ≡1(mod10^4 )  ∵15999=500×32−1            (11^(500) )^(32) ≡(1)^(32) (mod10^4 )         11^(16000) ≡1(mod10^4 )        11^(16000) ≡1+10^4 ×10(mod10^4 )        11^(16000) ≡100001(mod10^4 )  Dividing by 11        11^(15999) ≡9091(mod10^4 )   Last 4 digits of 11^(5999)  are: 9091

$$\mathrm{11}^{\mathrm{15999}} \equiv{x}\left({mod}\:\mathrm{10}^{\mathrm{4}} \right) \\ $$$$\because\:{gcd}\left(\mathrm{11},\mathrm{10}^{\mathrm{4}} \right)=\mathrm{1} \\ $$$$\therefore\:\mathrm{11}^{\phi\left(\mathrm{10}^{\mathrm{4}} \right)} \equiv\mathrm{1}\left({mod}\mathrm{10}^{\mathrm{4}} \right) \\ $$$$\phi\left(\mathrm{10}^{\mathrm{4}} \right)=\mathrm{4000} \\ $$$${Least}\:{number}\:{n}\:{for}\:{which} \\ $$$$\:\:\:\:\mathrm{11}^{{n}} \equiv\mathrm{1}\left({mod}\:\mathrm{10000}\right) \\ $$$${must}\:{be}\:{any}\:{divisor}\:{of}\:\phi\left(\mathrm{10}^{\mathrm{4}} \right)=\mathrm{4000} \\ $$$$ \\ $$$$\mathcal{T}{rying}\:{for}\:{n}=\mathrm{1},\mathrm{2},\mathrm{4},...,\mathrm{500},\mathrm{800},...\mathrm{4000} \\ $$$${we}\:{can}\:{see}\:{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{11}^{\mathrm{500}} \equiv\mathrm{1}\left({mod}\mathrm{10}^{\mathrm{4}} \right) \\ $$$$\because\mathrm{15999}=\mathrm{500}×\mathrm{32}−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\left(\mathrm{11}^{\mathrm{500}} \right)^{\mathrm{32}} \equiv\left(\mathrm{1}\right)^{\mathrm{32}} \left({mod}\mathrm{10}^{\mathrm{4}} \right) \\ $$$$\:\:\:\:\:\:\:\mathrm{11}^{\mathrm{16000}} \equiv\mathrm{1}\left({mod}\mathrm{10}^{\mathrm{4}} \right) \\ $$$$\:\:\:\:\:\:\mathrm{11}^{\mathrm{16000}} \equiv\mathrm{1}+\mathrm{10}^{\mathrm{4}} ×\mathrm{10}\left({mod}\mathrm{10}^{\mathrm{4}} \right) \\ $$$$\:\:\:\:\:\:\mathrm{11}^{\mathrm{16000}} \equiv\mathrm{100001}\left({mod}\mathrm{10}^{\mathrm{4}} \right) \\ $$$${Dividing}\:{by}\:\mathrm{11} \\ $$$$\:\:\:\:\:\:\mathrm{11}^{\mathrm{15999}} \equiv\mathrm{9091}\left({mod}\mathrm{10}^{\mathrm{4}} \right) \\ $$$$\:{Last}\:\mathrm{4}\:{digits}\:{of}\:\mathrm{11}^{\mathrm{5999}} \:{are}:\:\mathrm{9091} \\ $$

Commented by gsk2684 last updated on 31/Oct/21

thanks

$${thanks}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com