Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 156513 by cortano last updated on 12/Oct/21

x^4 +4x^3 −26x^2 −20x+25=0  x=? (exact form)

$$\mathrm{x}^{\mathrm{4}} +\mathrm{4x}^{\mathrm{3}} −\mathrm{26x}^{\mathrm{2}} −\mathrm{20x}+\mathrm{25}=\mathrm{0} \\ $$$$\mathrm{x}=?\:\left(\mathrm{exact}\:\mathrm{form}\right) \\ $$

Commented by john_santu last updated on 12/Oct/21

⇒x^2 +4x−26−((20)/x)+((25)/x^2 ) =0  ⇒(x−(5/x))^2 +10+4(x−(5/x))−26=0  ⇒(x−(5/x))^2 +4(x−(5/x))−16=0  ⇒(x−(5/x)+2)^2 −20=0  ⇒ { ((x−(5/x)+2=2(√5))),((x−(5/x)+2=−2(√5))) :}  case(1) x^2 +2(1−(√5))x−5=0  ⇒x=((2((√5)−1)±(√(4(6−2(√5))+20)))/2)  ⇒x=((2((√5)−1)±2(√(11−2(√5))))/2)  ⇒x=(√5)−1±(√(11−2(√5)))  case(2) x^2 +2(1+(√5))x−5=0  ⇒x=((−2(1+(√5))±(√(4(6+2(√5))+20)))/2)  ⇒x=((−2(1+(√5))±2(√(11+2(√5))))/2)  ⇒x=−1−(√5)±(√(11+2(√5)))

$$\Rightarrow{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{26}−\frac{\mathrm{20}}{{x}}+\frac{\mathrm{25}}{{x}^{\mathrm{2}} }\:=\mathrm{0} \\ $$$$\Rightarrow\left({x}−\frac{\mathrm{5}}{{x}}\right)^{\mathrm{2}} +\mathrm{10}+\mathrm{4}\left({x}−\frac{\mathrm{5}}{{x}}\right)−\mathrm{26}=\mathrm{0} \\ $$$$\Rightarrow\left({x}−\frac{\mathrm{5}}{{x}}\right)^{\mathrm{2}} +\mathrm{4}\left({x}−\frac{\mathrm{5}}{{x}}\right)−\mathrm{16}=\mathrm{0} \\ $$$$\Rightarrow\left({x}−\frac{\mathrm{5}}{{x}}+\mathrm{2}\right)^{\mathrm{2}} −\mathrm{20}=\mathrm{0} \\ $$$$\Rightarrow\begin{cases}{{x}−\frac{\mathrm{5}}{{x}}+\mathrm{2}=\mathrm{2}\sqrt{\mathrm{5}}}\\{{x}−\frac{\mathrm{5}}{{x}}+\mathrm{2}=−\mathrm{2}\sqrt{\mathrm{5}}}\end{cases} \\ $$$${case}\left(\mathrm{1}\right)\:{x}^{\mathrm{2}} +\mathrm{2}\left(\mathrm{1}−\sqrt{\mathrm{5}}\right){x}−\mathrm{5}=\mathrm{0} \\ $$$$\Rightarrow{x}=\frac{\mathrm{2}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)\pm\sqrt{\mathrm{4}\left(\mathrm{6}−\mathrm{2}\sqrt{\mathrm{5}}\right)+\mathrm{20}}}{\mathrm{2}} \\ $$$$\Rightarrow{x}=\frac{\mathrm{2}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)\pm\mathrm{2}\sqrt{\mathrm{11}−\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{2}} \\ $$$$\Rightarrow{x}=\sqrt{\mathrm{5}}−\mathrm{1}\pm\sqrt{\mathrm{11}−\mathrm{2}\sqrt{\mathrm{5}}} \\ $$$${case}\left(\mathrm{2}\right)\:{x}^{\mathrm{2}} +\mathrm{2}\left(\mathrm{1}+\sqrt{\mathrm{5}}\right){x}−\mathrm{5}=\mathrm{0} \\ $$$$\Rightarrow{x}=\frac{−\mathrm{2}\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)\pm\sqrt{\mathrm{4}\left(\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}\right)+\mathrm{20}}}{\mathrm{2}} \\ $$$$\Rightarrow{x}=\frac{−\mathrm{2}\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)\pm\mathrm{2}\sqrt{\mathrm{11}+\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{2}} \\ $$$$\Rightarrow{x}=−\mathrm{1}−\sqrt{\mathrm{5}}\pm\sqrt{\mathrm{11}+\mathrm{2}\sqrt{\mathrm{5}}}\: \\ $$

Commented by Ngeumani last updated on 12/Oct/21

is good

$${is}\:{good} \\ $$

Commented by Tawa11 last updated on 12/Oct/21

Weldone

$$\mathrm{Weldone} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com