Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 156136 by SANOGO last updated on 08/Oct/21

soit E(x) la partie entiere ,p<q  alors la valeur de   ∫^q _p E(x)dx =?

$${soit}\:{E}\left({x}\right)\:{la}\:{partie}\:{entiere}\:,{p}<{q} \\ $$ $${alors}\:{la}\:{valeur}\:{de}\: \\ $$ $$\underset{{p}} {\int}^{{q}} {E}\left({x}\right){dx}\:=? \\ $$

Answered by KONE last updated on 10/Oct/21

∫_p ^q E(x)dx=∫_p ^(p+1) E(x)dx+∫_(p+1^ ) ^(p+2) E(x)dx+.....+∫_(q−2) ^(q−1) E(x)dx+∫_(q−1) ^q E(x)dx  =Σ_(k=p) ^(q−1) ∫_k ^(k+1) E(x)dx=Σ_(k=p) ^q k=(q−1−p+1)((q+p−1)/2)  donc ∫_p ^q E(x)dx=(q+p−1)((q−p)/2)   KAB

$$\int_{{p}} ^{{q}} {E}\left({x}\right){dx}=\int_{{p}} ^{{p}+\mathrm{1}} {E}\left({x}\right){dx}+\int_{{p}+\mathrm{1}^{} } ^{{p}+\mathrm{2}} {E}\left({x}\right){dx}+.....+\int_{{q}−\mathrm{2}} ^{{q}−\mathrm{1}} {E}\left({x}\right){dx}+\int_{{q}−\mathrm{1}} ^{{q}} {E}\left({x}\right){dx} \\ $$ $$=\underset{{k}={p}} {\overset{{q}−\mathrm{1}} {\sum}}\int_{{k}} ^{{k}+\mathrm{1}} {E}\left({x}\right){dx}=\underset{{k}={p}} {\overset{{q}} {\sum}}{k}=\left({q}−\mathrm{1}−{p}+\mathrm{1}\right)\frac{{q}+{p}−\mathrm{1}}{\mathrm{2}} \\ $$ $${donc}\:\int_{{p}} ^{{q}} {E}\left({x}\right){dx}=\left({q}+{p}−\mathrm{1}\right)\frac{{q}−{p}}{\mathrm{2}}\:\:\:\underline{\mathscr{KAB}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com