Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 156126 by VIDDD last updated on 08/Oct/21

   cos(π/5)=...?  with solution pls

$$\:\:\:\mathrm{cos}\frac{\pi}{\mathrm{5}}=...?\:\:\mathrm{with}\:\mathrm{solution}\:\mathrm{pls} \\ $$

Commented by cortano last updated on 08/Oct/21

(π/5)=36° ⇒cos 72°=2cos 36°−1  ⇒cos 36°=(√((1+cos 72°)/2))=(√((1+sin 18°)/2))

$$\frac{\pi}{\mathrm{5}}=\mathrm{36}°\:\Rightarrow\mathrm{cos}\:\mathrm{72}°=\mathrm{2cos}\:\mathrm{36}°−\mathrm{1} \\ $$$$\Rightarrow\mathrm{cos}\:\mathrm{36}°=\sqrt{\frac{\mathrm{1}+\mathrm{cos}\:\mathrm{72}°}{\mathrm{2}}}=\sqrt{\frac{\mathrm{1}+\mathrm{sin}\:\mathrm{18}°}{\mathrm{2}}} \\ $$

Answered by puissant last updated on 08/Oct/21

a=cos(π/5)  ;  b=cos((2π)/5)  and  −a=cos((4π)/5)  We have cos((2π)/5)= 2cos^2 (π/5) − 1  ⇒ { ((b=2a^2 −1)),((−a=2b^2 −1)) :}  ⇒  a+b=2(a^2 −b^2 )  ⇒ a+b=2(a+b)(a−b)   ⇒ 1=a−b ⇒ b=a−(1/2)..  ⇒ a−(1/2) = 2a^2 −1   ⇒ 4a^2 −2a−1=0  Δ=4−4(−1)(4)=20 → (√Δ)=2(√5)..  a_1 =((−2−2(√5))/8)=((−1−(√5))/4)<0 (impossible)  a_2 =((2+2(√5))/8)=((1+(√5))/4)=cos(π/5)  cos((2π)/5)=cos(π/5)−(1/2)=(((√5)−1)/4)    ∴∵cos((π/5))=((1+(√5))/4)  and cos(((2π)/5))=(((√5)−1)/4)..                 ..........Le puissant...........

$${a}={cos}\frac{\pi}{\mathrm{5}}\:\:;\:\:{b}={cos}\frac{\mathrm{2}\pi}{\mathrm{5}}\:\:{and}\:\:−{a}={cos}\frac{\mathrm{4}\pi}{\mathrm{5}} \\ $$$${We}\:{have}\:{cos}\frac{\mathrm{2}\pi}{\mathrm{5}}=\:\mathrm{2}{cos}^{\mathrm{2}} \frac{\pi}{\mathrm{5}}\:−\:\mathrm{1} \\ $$$$\Rightarrow\begin{cases}{{b}=\mathrm{2}{a}^{\mathrm{2}} −\mathrm{1}}\\{−{a}=\mathrm{2}{b}^{\mathrm{2}} −\mathrm{1}}\end{cases}\:\:\Rightarrow\:\:{a}+{b}=\mathrm{2}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:{a}+{b}=\mathrm{2}\left({a}+{b}\right)\left({a}−{b}\right)\: \\ $$$$\Rightarrow\:\mathrm{1}={a}−{b}\:\Rightarrow\:{b}={a}−\frac{\mathrm{1}}{\mathrm{2}}.. \\ $$$$\Rightarrow\:{a}−\frac{\mathrm{1}}{\mathrm{2}}\:=\:\mathrm{2}{a}^{\mathrm{2}} −\mathrm{1}\: \\ $$$$\Rightarrow\:\mathrm{4}{a}^{\mathrm{2}} −\mathrm{2}{a}−\mathrm{1}=\mathrm{0} \\ $$$$\Delta=\mathrm{4}−\mathrm{4}\left(−\mathrm{1}\right)\left(\mathrm{4}\right)=\mathrm{20}\:\rightarrow\:\sqrt{\Delta}=\mathrm{2}\sqrt{\mathrm{5}}.. \\ $$$${a}_{\mathrm{1}} =\frac{−\mathrm{2}−\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{8}}=\frac{−\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{4}}<\mathrm{0}\:\left({impossible}\right) \\ $$$${a}_{\mathrm{2}} =\frac{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{8}}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}}={cos}\frac{\pi}{\mathrm{5}} \\ $$$${cos}\frac{\mathrm{2}\pi}{\mathrm{5}}={cos}\frac{\pi}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}} \\ $$$$ \\ $$$$\therefore\because{cos}\left(\frac{\pi}{\mathrm{5}}\right)=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}}\:\:{and}\:{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right)=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}.. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:..........\mathscr{L}{e}\:{puissant}........... \\ $$

Commented by VIDDD last updated on 09/Oct/21

  thanks

$$\:\:{thanks}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com