Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 155400 by TVTA last updated on 30/Sep/21

x^2 +x+5xy+6y^2 +2y−2=0

$${x}^{\mathrm{2}} +{x}+\mathrm{5}{xy}+\mathrm{6}{y}^{\mathrm{2}} +\mathrm{2}{y}−\mathrm{2}=\mathrm{0} \\ $$

Commented by MJS_new last updated on 30/Sep/21

hyperbola with center  [(2),((−1)) ] and axes  a=2(√(−7+5(√2)))  b=2(√(7+5(√2)))  rotated by ((3π)/8)=67.5°  the transformed equation is  (x^2 /(−28+20(√2)))−(y^2 /(28+20(√2)))=1

$$\mathrm{hyperbola}\:\mathrm{with}\:\mathrm{center}\:\begin{bmatrix}{\mathrm{2}}\\{−\mathrm{1}}\end{bmatrix}\:\mathrm{and}\:\mathrm{axes} \\ $$$${a}=\mathrm{2}\sqrt{−\mathrm{7}+\mathrm{5}\sqrt{\mathrm{2}}} \\ $$$${b}=\mathrm{2}\sqrt{\mathrm{7}+\mathrm{5}\sqrt{\mathrm{2}}} \\ $$$$\mathrm{rotated}\:\mathrm{by}\:\frac{\mathrm{3}\pi}{\mathrm{8}}=\mathrm{67}.\mathrm{5}° \\ $$$$\mathrm{the}\:\mathrm{transformed}\:\mathrm{equation}\:\mathrm{is} \\ $$$$\frac{{x}^{\mathrm{2}} }{−\mathrm{28}+\mathrm{20}\sqrt{\mathrm{2}}}−\frac{{y}^{\mathrm{2}} }{\mathrm{28}+\mathrm{20}\sqrt{\mathrm{2}}}=\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com