Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 155384 by aliyn last updated on 29/Sep/21

Solve : x^2  − (5−i)x + (12−5i) = 0

$$\boldsymbol{{Solve}}\::\:\boldsymbol{{x}}^{\mathrm{2}} \:−\:\left(\mathrm{5}−\boldsymbol{{i}}\right)\boldsymbol{{x}}\:+\:\left(\mathrm{12}−\mathrm{5}\boldsymbol{{i}}\right)\:=\:\mathrm{0} \\ $$

Commented by aliyn last updated on 29/Sep/21

????

$$???? \\ $$

Answered by puissant last updated on 30/Sep/21

Δ=(−5+i)^2 −4(12−5i)=−24+10i  let z=x+iy,  →x^2 +y^2 =∣z∣=26  →x^2 −y^2 =−24  →xy=((10)/2)=5  ⇒ 2x^2 =2 ⇒ x=±1 ; 2y^2 =50 ⇒ y=±5  xy=5>0 ⇒ (x=1 and y=5) or (x=−1 and y=−5)  take (√Δ)=1+5i..  x_1 =((5−i−1−5i)/2)=((4−6i)/2) = 2−3i..  x_2 =((5−i+1+5i)/2) = ((6+4i)/2) = 3+2i..    S_C ={ 2−3i ; 3+2i}...

$$\Delta=\left(−\mathrm{5}+{i}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{12}−\mathrm{5}{i}\right)=−\mathrm{24}+\mathrm{10}{i} \\ $$$${let}\:{z}={x}+{iy}, \\ $$$$\rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mid{z}\mid=\mathrm{26} \\ $$$$\rightarrow{x}^{\mathrm{2}} −{y}^{\mathrm{2}} =−\mathrm{24} \\ $$$$\rightarrow{xy}=\frac{\mathrm{10}}{\mathrm{2}}=\mathrm{5} \\ $$$$\Rightarrow\:\mathrm{2}{x}^{\mathrm{2}} =\mathrm{2}\:\Rightarrow\:{x}=\pm\mathrm{1}\:;\:\mathrm{2}{y}^{\mathrm{2}} =\mathrm{50}\:\Rightarrow\:{y}=\pm\mathrm{5} \\ $$$${xy}=\mathrm{5}>\mathrm{0}\:\Rightarrow\:\left({x}=\mathrm{1}\:{and}\:{y}=\mathrm{5}\right)\:{or}\:\left({x}=−\mathrm{1}\:{and}\:{y}=−\mathrm{5}\right) \\ $$$${take}\:\sqrt{\Delta}=\mathrm{1}+\mathrm{5}{i}.. \\ $$$${x}_{\mathrm{1}} =\frac{\mathrm{5}−{i}−\mathrm{1}−\mathrm{5}{i}}{\mathrm{2}}=\frac{\mathrm{4}−\mathrm{6}{i}}{\mathrm{2}}\:=\:\mathrm{2}−\mathrm{3}{i}.. \\ $$$${x}_{\mathrm{2}} =\frac{\mathrm{5}−{i}+\mathrm{1}+\mathrm{5}{i}}{\mathrm{2}}\:=\:\frac{\mathrm{6}+\mathrm{4}{i}}{\mathrm{2}}\:=\:\mathrm{3}+\mathrm{2}{i}.. \\ $$$$ \\ $$$${S}_{\mathbb{C}} =\left\{\:\mathrm{2}−\mathrm{3}{i}\:;\:\mathrm{3}+\mathrm{2}{i}\right\}... \\ $$

Answered by MJS_new last updated on 30/Sep/21

just solve it.  x^2 +px+q=0 ⇒ x=−(p/2)±(√((p^2 /4)−q))  p=−5+i∧q=12−5i  x=((5−i)/2)±(√((((−5+i)^2 )/4)−12+5i))  x=((5−i)/2)±((√(−2(12−5i)))/2)  (√(−2(12−5i)))=1+5i  x=((5−i)/2)±((1+5i)/2)  x=3+2i∨x=2−3i

$$\mathrm{just}\:\mathrm{solve}\:\mathrm{it}. \\ $$$${x}^{\mathrm{2}} +{px}+{q}=\mathrm{0}\:\Rightarrow\:{x}=−\frac{{p}}{\mathrm{2}}\pm\sqrt{\frac{{p}^{\mathrm{2}} }{\mathrm{4}}−{q}} \\ $$$${p}=−\mathrm{5}+\mathrm{i}\wedge{q}=\mathrm{12}−\mathrm{5i} \\ $$$${x}=\frac{\mathrm{5}−\mathrm{i}}{\mathrm{2}}\pm\sqrt{\frac{\left(−\mathrm{5}+\mathrm{i}\right)^{\mathrm{2}} }{\mathrm{4}}−\mathrm{12}+\mathrm{5i}} \\ $$$${x}=\frac{\mathrm{5}−\mathrm{i}}{\mathrm{2}}\pm\frac{\sqrt{−\mathrm{2}\left(\mathrm{12}−\mathrm{5i}\right)}}{\mathrm{2}} \\ $$$$\sqrt{−\mathrm{2}\left(\mathrm{12}−\mathrm{5i}\right)}=\mathrm{1}+\mathrm{5i} \\ $$$${x}=\frac{\mathrm{5}−\mathrm{i}}{\mathrm{2}}\pm\frac{\mathrm{1}+\mathrm{5i}}{\mathrm{2}} \\ $$$${x}=\mathrm{3}+\mathrm{2i}\vee{x}=\mathrm{2}−\mathrm{3i} \\ $$

Commented by puissant last updated on 30/Sep/21

x^2 +px+q=0 ⇒ x^2 +px=−q  ⇒ x^2 +px+(p^2 /4)=(p^2 /4)−q ⇒ (x+(p/2))^2 =(p^2 /4)−q  ⇒ x+(p/2)=±(√((p^2 /4)−q))  ⇒ x=−(p/2)±(√((p^2 /4)−q))...

$${x}^{\mathrm{2}} +{px}+{q}=\mathrm{0}\:\Rightarrow\:{x}^{\mathrm{2}} +{px}=−{q} \\ $$$$\Rightarrow\:{x}^{\mathrm{2}} +{px}+\frac{{p}^{\mathrm{2}} }{\mathrm{4}}=\frac{{p}^{\mathrm{2}} }{\mathrm{4}}−{q}\:\Rightarrow\:\left({x}+\frac{{p}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{{p}^{\mathrm{2}} }{\mathrm{4}}−{q} \\ $$$$\Rightarrow\:{x}+\frac{{p}}{\mathrm{2}}=\pm\sqrt{\frac{{p}^{\mathrm{2}} }{\mathrm{4}}−{q}} \\ $$$$\Rightarrow\:{x}=−\frac{{p}}{\mathrm{2}}\pm\sqrt{\frac{{p}^{\mathrm{2}} }{\mathrm{4}}−{q}}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com