Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 155382 by MathsFan last updated on 29/Sep/21

Answered by puissant last updated on 29/Sep/21

Q=∫_0 ^(10) (√(x+(√(x+(√(x+(√(x+...))))))))dx  u=(√(x+(√(x+(√(x+(√(x+....))))))))→u^2 =x+(√(x+(√(x+(√(x+....))))))  ⇒ u^2 −u=x ⇒ u−u+(1/4)=x+(1/4)  ⇒ (u−(1/2))^2 =x+(1/4) ⇒ u=(1/2)+(√((4x+1)/4))  Q=∫_0 ^(10) ((1/2)+(1/2)(√(4x+1)))dx=(1/2)∫_0 ^(10) (1+(√(4x+1)))dx  =(1/2)[x+(2/3)×(1/4)(√((4x+1)^3 ))]_0 ^(10) =(1/2)[x+(1/6)(√((4x+1)^3 ))]_0 ^(10)   =(1/2)[(10+((√(68921))/6))−(0+(1/6))]          ∴ ∵       Q= (1/(12))(59+2(√(68921)))..                          ..............Le puissant...............

$${Q}=\int_{\mathrm{0}} ^{\mathrm{10}} \sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+...}}}}{dx} \\ $$$${u}=\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+....}}}}\rightarrow{u}^{\mathrm{2}} ={x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+....}}} \\ $$$$\Rightarrow\:{u}^{\mathrm{2}} −{u}={x}\:\Rightarrow\:{u}−{u}+\frac{\mathrm{1}}{\mathrm{4}}={x}+\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\Rightarrow\:\left({u}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} ={x}+\frac{\mathrm{1}}{\mathrm{4}}\:\Rightarrow\:{u}=\frac{\mathrm{1}}{\mathrm{2}}+\sqrt{\frac{\mathrm{4}{x}+\mathrm{1}}{\mathrm{4}}} \\ $$$${Q}=\int_{\mathrm{0}} ^{\mathrm{10}} \left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{4}{x}+\mathrm{1}}\right){dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{10}} \left(\mathrm{1}+\sqrt{\mathrm{4}{x}+\mathrm{1}}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[{x}+\frac{\mathrm{2}}{\mathrm{3}}×\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\left(\mathrm{4}{x}+\mathrm{1}\right)^{\mathrm{3}} }\right]_{\mathrm{0}} ^{\mathrm{10}} =\frac{\mathrm{1}}{\mathrm{2}}\left[{x}+\frac{\mathrm{1}}{\mathrm{6}}\sqrt{\left(\mathrm{4}{x}+\mathrm{1}\right)^{\mathrm{3}} }\right]_{\mathrm{0}} ^{\mathrm{10}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\left(\mathrm{10}+\frac{\sqrt{\mathrm{68921}}}{\mathrm{6}}\right)−\left(\mathrm{0}+\frac{\mathrm{1}}{\mathrm{6}}\right)\right] \\ $$$$ \\ $$$$\:\:\:\:\:\:\therefore\:\because\:\:\:\:\:\:\:{Q}=\:\frac{\mathrm{1}}{\mathrm{12}}\left(\mathrm{59}+\mathrm{2}\sqrt{\mathrm{68921}}\right).. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:..............\mathscr{L}{e}\:{puissant}............... \\ $$$$ \\ $$

Commented by SANOGO last updated on 30/Sep/21

le dur gar

$${le}\:{dur}\:{gar} \\ $$

Commented by MathsFan last updated on 30/Sep/21

correct sir

$${correct}\:{sir} \\ $$

Commented by peter frank last updated on 01/Oct/21

good

$$\mathrm{good} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com