Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 155377 by mathdanisur last updated on 29/Sep/21

For two non-negative real numbers:  a^6  + b^6  = 2  Find  a;b  such that  3(a+b)=1+5(√(ab))

$$\mathrm{For}\:\mathrm{two}\:\mathrm{non}-\mathrm{negative}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{a}^{\mathrm{6}} \:+\:\mathrm{b}^{\mathrm{6}} \:=\:\mathrm{2} \\ $$$$\mathrm{Find}\:\:\mathrm{a};\mathrm{b}\:\:\mathrm{such}\:\mathrm{that}\:\:\mathrm{3}\left(\mathrm{a}+\mathrm{b}\right)=\mathrm{1}+\mathrm{5}\sqrt{\mathrm{ab}} \\ $$

Answered by MJS_new last updated on 30/Sep/21

the only real solution is a=b=1

$$\mathrm{the}\:\mathrm{only}\:\mathrm{real}\:\mathrm{solution}\:\mathrm{is}\:{a}={b}=\mathrm{1} \\ $$

Commented by mathdanisur last updated on 30/Sep/21

Thankyou Ser, how if possible

$$\mathrm{Thankyou}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{how}\:\mathrm{if}\:\mathrm{possible} \\ $$

Answered by MJS_new last updated on 30/Sep/21

3(a+b)=1+5(√(ab))  let a=u−v∧b=u+v  6u=1+5(√(u^2 −v^2 )) ⇒ v^2 =−((11u^2 −12u+1)/(25))  a^6 +b^6 −2=0  u^6 +15u^4 v^2 +15u^2 v^4 +v^6 −1=0  inserting & transforming  u^6 −((279)/(679))u^5 −((2985)/(2716))u^4 +((405)/(2716))u^3 +((45)/(21728))u^2 −(9/(10864))u+((7813)/(21728))=0  (u−1)^2 (u^4 +((1079)/(679))u^3 +((2931)/(2716))u^2 +((1951)/(2716))u+((7813)/(21728)))=0  this has no other real solution than  u=1  ⇒  v=0  ⇒  a=b=1

$$\mathrm{3}\left({a}+{b}\right)=\mathrm{1}+\mathrm{5}\sqrt{{ab}} \\ $$$$\mathrm{let}\:{a}={u}−{v}\wedge{b}={u}+{v} \\ $$$$\mathrm{6}{u}=\mathrm{1}+\mathrm{5}\sqrt{{u}^{\mathrm{2}} −{v}^{\mathrm{2}} }\:\Rightarrow\:{v}^{\mathrm{2}} =−\frac{\mathrm{11}{u}^{\mathrm{2}} −\mathrm{12}{u}+\mathrm{1}}{\mathrm{25}} \\ $$$${a}^{\mathrm{6}} +{b}^{\mathrm{6}} −\mathrm{2}=\mathrm{0} \\ $$$${u}^{\mathrm{6}} +\mathrm{15}{u}^{\mathrm{4}} {v}^{\mathrm{2}} +\mathrm{15}{u}^{\mathrm{2}} {v}^{\mathrm{4}} +{v}^{\mathrm{6}} −\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{inserting}\:\&\:\mathrm{transforming} \\ $$$${u}^{\mathrm{6}} −\frac{\mathrm{279}}{\mathrm{679}}{u}^{\mathrm{5}} −\frac{\mathrm{2985}}{\mathrm{2716}}{u}^{\mathrm{4}} +\frac{\mathrm{405}}{\mathrm{2716}}{u}^{\mathrm{3}} +\frac{\mathrm{45}}{\mathrm{21728}}{u}^{\mathrm{2}} −\frac{\mathrm{9}}{\mathrm{10864}}{u}+\frac{\mathrm{7813}}{\mathrm{21728}}=\mathrm{0} \\ $$$$\left({u}−\mathrm{1}\right)^{\mathrm{2}} \left({u}^{\mathrm{4}} +\frac{\mathrm{1079}}{\mathrm{679}}{u}^{\mathrm{3}} +\frac{\mathrm{2931}}{\mathrm{2716}}{u}^{\mathrm{2}} +\frac{\mathrm{1951}}{\mathrm{2716}}{u}+\frac{\mathrm{7813}}{\mathrm{21728}}\right)=\mathrm{0} \\ $$$$\mathrm{this}\:\mathrm{has}\:\mathrm{no}\:\mathrm{other}\:\mathrm{real}\:\mathrm{solution}\:\mathrm{than} \\ $$$${u}=\mathrm{1} \\ $$$$\Rightarrow \\ $$$${v}=\mathrm{0} \\ $$$$\Rightarrow \\ $$$${a}={b}=\mathrm{1} \\ $$

Commented by mathdanisur last updated on 30/Sep/21

Very impressive Ser thank you

$$\mathrm{Very}\:\mathrm{impressive}\:\boldsymbol{\mathrm{S}}\mathrm{er}\:\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com