Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 155372 by mathdanisur last updated on 29/Sep/21

Commented by Rasheed.Sindhi last updated on 30/Sep/21

What′s meant by Z.Q ?

$${What}'{s}\:{meant}\:{by}\:\mathrm{Z}.\mathrm{Q}\:? \\ $$

Commented by mathdanisur last updated on 30/Sep/21

Dear Ser, Z-integers an Q-rationl

$$\mathrm{Dear}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{Z}-\mathrm{integers}\:\mathrm{an}\:\mathrm{Q}-\mathrm{rationl} \\ $$

Commented by Rasheed.Sindhi last updated on 01/Oct/21

I asked about Z . Q  Do you mean x∈Z, y∈Q ?

$$\mathrm{I}\:\mathrm{a}{s}\mathrm{ked}\:\mathrm{about}\:\mathrm{Z}\:.\:\mathrm{Q} \\ $$$$\mathrm{Do}\:\mathrm{you}\:\mathrm{mean}\:\mathrm{x}\in\mathrm{Z},\:\mathrm{y}\in\mathrm{Q}\:? \\ $$

Commented by mathdanisur last updated on 30/Sep/21

Dear Ser, yes

$$\mathrm{Dear}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{yes} \\ $$

Answered by Rasheed.Sindhi last updated on 30/Sep/21

((x^2 +xy+y^2 )/(x+2y))=(7/5)  5x^2 +5xy+5y^2 −7x−14y=0  5y^2 +(5x−14)y+5x^2 −7x=0  y=((−(5x−14)±(√((5x−14)^2 −4(5)(5x^2 −7x))))/(10))   △=25x^2 −140x+196−100x^2 +140x   =25x^2 +196−100x^2 =196−75x^2       For y being rational △ must be  perfect square.  196−75x^2  is perfect square for  x=0,±1 only,because x≥2 △ is −ve  and y will be imaginary.  x=0⇒y=((−(5(0)−14)±(√(196−75(0)^2 )))/(10))            =((14±14)/(10))=0,((14)/5)  (0,0) is not acceptable,because it  doesn′t satisfy  the original equatkon.  (x,y)=(0,((14)/5))  x=1,y=((−(5−14)±11)/(10))=((9±11)/(10))=             y=2,−(1/5)  (x,y)=(1,2)(1,−(1/5))  x=−1⇒y=((−(5(−1)−14)±11)/(10))                  =((5+14±11)/(10))=3,(4/5)  (x,y)=(−1,3),(−1,(4/5))

$$\frac{{x}^{\mathrm{2}} +{xy}+{y}^{\mathrm{2}} }{{x}+\mathrm{2}{y}}=\frac{\mathrm{7}}{\mathrm{5}} \\ $$$$\mathrm{5}{x}^{\mathrm{2}} +\mathrm{5}{xy}+\mathrm{5}{y}^{\mathrm{2}} −\mathrm{7}{x}−\mathrm{14}{y}=\mathrm{0} \\ $$$$\mathrm{5}{y}^{\mathrm{2}} +\left(\mathrm{5}{x}−\mathrm{14}\right){y}+\mathrm{5}{x}^{\mathrm{2}} −\mathrm{7}{x}=\mathrm{0} \\ $$$${y}=\frac{−\left(\mathrm{5}{x}−\mathrm{14}\right)\pm\sqrt{\left(\mathrm{5}{x}−\mathrm{14}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{5}\right)\left(\mathrm{5}{x}^{\mathrm{2}} −\mathrm{7}{x}\right)}}{\mathrm{10}} \\ $$$$\:\bigtriangleup=\mathrm{25}{x}^{\mathrm{2}} −\mathrm{140}{x}+\mathrm{196}−\mathrm{100}{x}^{\mathrm{2}} +\mathrm{140}{x} \\ $$$$\:=\mathrm{25}{x}^{\mathrm{2}} +\mathrm{196}−\mathrm{100}{x}^{\mathrm{2}} =\mathrm{196}−\mathrm{75}{x}^{\mathrm{2}} \\ $$$$\:\:\:\:{For}\:{y}\:{being}\:{rational}\:\bigtriangleup\:{must}\:{be} \\ $$$${perfect}\:{square}. \\ $$$$\mathrm{196}−\mathrm{75}{x}^{\mathrm{2}} \:{is}\:{perfect}\:{square}\:{for} \\ $$$${x}=\mathrm{0},\pm\mathrm{1}\:{only},{because}\:{x}\geqslant\mathrm{2}\:\bigtriangleup\:{is}\:−{ve} \\ $$$${and}\:{y}\:{will}\:{be}\:{imaginary}. \\ $$$${x}=\mathrm{0}\Rightarrow{y}=\frac{−\left(\mathrm{5}\left(\mathrm{0}\right)−\mathrm{14}\right)\pm\sqrt{\mathrm{196}−\mathrm{75}\left(\mathrm{0}\right)^{\mathrm{2}} }}{\mathrm{10}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{14}\pm\mathrm{14}}{\mathrm{10}}=\mathrm{0},\frac{\mathrm{14}}{\mathrm{5}} \\ $$$$\left(\mathrm{0},\mathrm{0}\right)\:{is}\:{not}\:{acceptable},{because}\:{it} \\ $$$${doesn}'{t}\:{satisfy}\:\:{the}\:{original}\:{equatkon}. \\ $$$$\left({x},{y}\right)=\left(\mathrm{0},\frac{\mathrm{14}}{\mathrm{5}}\right) \\ $$$${x}=\mathrm{1},{y}=\frac{−\left(\mathrm{5}−\mathrm{14}\right)\pm\mathrm{11}}{\mathrm{10}}=\frac{\mathrm{9}\pm\mathrm{11}}{\mathrm{10}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{y}=\mathrm{2},−\frac{\mathrm{1}}{\mathrm{5}} \\ $$$$\left({x},{y}\right)=\left(\mathrm{1},\mathrm{2}\right)\left(\mathrm{1},−\frac{\mathrm{1}}{\mathrm{5}}\right) \\ $$$${x}=−\mathrm{1}\Rightarrow{y}=\frac{−\left(\mathrm{5}\left(−\mathrm{1}\right)−\mathrm{14}\right)\pm\mathrm{11}}{\mathrm{10}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{5}+\mathrm{14}\pm\mathrm{11}}{\mathrm{10}}=\mathrm{3},\frac{\mathrm{4}}{\mathrm{5}} \\ $$$$\left({x},{y}\right)=\left(−\mathrm{1},\mathrm{3}\right),\left(−\mathrm{1},\frac{\mathrm{4}}{\mathrm{5}}\right) \\ $$

Commented by mathdanisur last updated on 01/Oct/21

Very nice Ser, thank you

$$\mathrm{Very}\:\mathrm{nice}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{thank}\:\mathrm{you} \\ $$

Commented by mathdanisur last updated on 30/Sep/21

Thank you dear Ser  but amswer:  (x;y)=(-1;3),(-1;(4/5);),(0;((14)/5)),(1;2),(1;-(1/5))

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{dear}\:\boldsymbol{\mathrm{S}}\mathrm{er} \\ $$$$\mathrm{but}\:\mathrm{amswer}: \\ $$$$\left(\mathrm{x};\mathrm{y}\right)=\left(-\mathrm{1};\mathrm{3}\right),\left(-\mathrm{1};\frac{\mathrm{4}}{\mathrm{5}};\right),\left(\mathrm{0};\frac{\mathrm{14}}{\mathrm{5}}\right),\left(\mathrm{1};\mathrm{2}\right),\left(\mathrm{1};-\frac{\mathrm{1}}{\mathrm{5}}\right) \\ $$

Commented by Rasheed.Sindhi last updated on 30/Sep/21

I′ve revised my answer and now it  consist of all the answers.

$$\mathrm{I}'{ve}\:{revised}\:{my}\:{answer}\:{and}\:{now}\:{it} \\ $$$${consist}\:{of}\:{all}\:{the}\:{answers}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com