Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 155153 by mathdanisur last updated on 26/Sep/21

Solve the equation in R  (√(2(x^2  - x + 1))) = 1 + (√x) - x

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{in}\:\mathbb{R} \\ $$$$\sqrt{\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{x}\:+\:\mathrm{1}\right)}\:=\:\mathrm{1}\:+\:\sqrt{\mathrm{x}}\:-\:\mathrm{x} \\ $$

Answered by MJS_new last updated on 26/Sep/21

(√x)∈R ⇒ x≥0 but it′s easy to see x≠0  and lhs>0 ⇒ 1+(√x)−x>0  ⇒  0<x<(3/2)+((√5)/2)    let x=t^2 ∧t>0  (√(2(t^4 −t^2 +1)))=−t^2 +t+1 [⇒ 0<t<(1/2)+((√5)/2)]  squaring  2(t^4 −t^2 +1)=(t^2 −t−1)^2   t^4 +2t^3 −t^2 −2t+1=0  (t^2 +t+1)^2 =0  ⇒ t=−(1/2)+((√5)/2)  ⇒ x=(3/2)−((√5)/2)

$$\sqrt{{x}}\in\mathbb{R}\:\Rightarrow\:{x}\geqslant\mathrm{0}\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{see}\:{x}\neq\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{lhs}>\mathrm{0}\:\Rightarrow\:\mathrm{1}+\sqrt{{x}}−{x}>\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\mathrm{0}<{x}<\frac{\mathrm{3}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{let}\:{x}={t}^{\mathrm{2}} \wedge{t}>\mathrm{0} \\ $$$$\sqrt{\mathrm{2}\left({t}^{\mathrm{4}} −{t}^{\mathrm{2}} +\mathrm{1}\right)}=−{t}^{\mathrm{2}} +{t}+\mathrm{1}\:\left[\Rightarrow\:\mathrm{0}<{t}<\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\right] \\ $$$$\mathrm{squaring} \\ $$$$\mathrm{2}\left({t}^{\mathrm{4}} −{t}^{\mathrm{2}} +\mathrm{1}\right)=\left({t}^{\mathrm{2}} −{t}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$${t}^{\mathrm{4}} +\mathrm{2}{t}^{\mathrm{3}} −{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{1}=\mathrm{0} \\ $$$$\left({t}^{\mathrm{2}} +{t}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\:{t}=−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\Rightarrow\:{x}=\frac{\mathrm{3}}{\mathrm{2}}−\frac{\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$

Commented by mathdanisur last updated on 26/Sep/21

awesome solution, thank you Ser

$$\mathrm{awesome}\:\mathrm{solution},\:\mathrm{thank}\:\mathrm{you}\:\boldsymbol{\mathrm{S}}\mathrm{er} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com