Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 83859 by john santu last updated on 06/Mar/20

lim_(x→0)  ((1/x^2 )− cot^2 x)= ?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\:\mathrm{cot}\:^{\mathrm{2}} {x}\right)=\:? \\ $$

Commented by john santu last updated on 06/Mar/20

lim_(x→0)  ((1/x^2 )−(1/(tan^2 x))) =   lim_(x→0)  ((((tan x−x)(tan x+x))/(x^2  tan^2 x))) =   lim_(x→0)  (((tan x+x)/x)) × lim_(x→0)  (((tan x−x)/(x tan^2  x))) =  2 × lim_(x→0)  (((1/2)sin 2x − xcos^2  x)/(x sin^2  x)) =   2 × lim_(x→0)  ((cos 2x−[cos^2 x−xsin 2x])/(sin^2 x+x sin 2x))  2 × lim_(x→0)  ((cos^2 x−1+xsin 2x)/(sin^2 x+xsin 2x))  2 ×lim_(x→0)  ((−x^2 +2x^2 )/(3x^2 )) = (2/3)

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{tan}\:^{\mathrm{2}} {x}}\right)\:=\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\left(\mathrm{tan}\:{x}−{x}\right)\left(\mathrm{tan}\:{x}+{x}\right)}{{x}^{\mathrm{2}} \:\mathrm{tan}\:^{\mathrm{2}} {x}}\right)\:=\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{tan}\:{x}+{x}}{{x}}\right)\:×\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{tan}\:{x}−{x}}{{x}\:\mathrm{tan}^{\mathrm{2}} \:{x}}\right)\:= \\ $$$$\mathrm{2}\:×\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2}{x}\:−\:{x}\mathrm{cos}^{\mathrm{2}} \:{x}}{{x}\:\mathrm{sin}^{\mathrm{2}} \:{x}}\:=\: \\ $$$$\mathrm{2}\:×\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{2}{x}−\left[\mathrm{cos}\:^{\mathrm{2}} {x}−{x}\mathrm{sin}\:\mathrm{2}{x}\right]}{\mathrm{sin}\:^{\mathrm{2}} {x}+{x}\:\mathrm{sin}\:\mathrm{2}{x}} \\ $$$$\mathrm{2}\:×\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:^{\mathrm{2}} {x}−\mathrm{1}+{x}\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{sin}\:^{\mathrm{2}} {x}+{x}\mathrm{sin}\:\mathrm{2}{x}} \\ $$$$\mathrm{2}\:×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−{x}^{\mathrm{2}} +\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{3}{x}^{\mathrm{2}} }\:=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com