Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 154892 by mathdanisur last updated on 22/Sep/21

Find:  cos(((3π)/7)) + cos(((3π)/7)) (√(2 - 2cos(((3π)/7)))) = ?

$$\mathrm{Find}: \\ $$$$\mathrm{cos}\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\:+\:\mathrm{cos}\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\:\sqrt{\mathrm{2}\:-\:\mathrm{2cos}\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)}\:=\:? \\ $$

Commented by MJS_new last updated on 23/Sep/21

(1/2)

$$\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by mathdanisur last updated on 23/Sep/21

Thank you Ser, solution if possible

$$\mathrm{Thank}\:\mathrm{you}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{solution}\:\mathrm{if}\:\mathrm{possible} \\ $$

Answered by mnjuly1970 last updated on 23/Sep/21

 cos (((3π)/7)) +2 cos (((3π)/7)).sin(((3π)/(14)))   cos (((3π)/7)) + 2cos(((3π)/7)).cos ((π/2) −((3π)/(14)))    = cos (((3π)/7)) + 2cos (((3π)/7))cos(((2π)/7))    ∴A:= cos (((3π)/7) )+ cos ((π/7)) + cos (((5π)/7))  2A.sin ((( π)/7) ) = sin(((4π)/7) )−sin(((2π)/7))          + sin(((2π)/7)) + sin(((6π)/7))−sin(((4π)/7))   2A . sin((π/7) )= sin(π−(π/7))           A = (1/2)        ■ m.n

$$\:{cos}\:\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\:+\mathrm{2}\:{cos}\:\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right).{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{14}}\right) \\ $$$$\:{cos}\:\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\:+\:\mathrm{2}{cos}\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right).{cos}\:\left(\frac{\pi}{\mathrm{2}}\:−\frac{\mathrm{3}\pi}{\mathrm{14}}\right)\: \\ $$$$\:=\:{cos}\:\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\:+\:\mathrm{2}{cos}\:\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right){cos}\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right) \\ $$$$\:\:\therefore\mathrm{A}:=\:{cos}\:\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\:\right)+\:{cos}\:\left(\frac{\pi}{\mathrm{7}}\right)\:+\:{cos}\:\left(\frac{\mathrm{5}\pi}{\mathrm{7}}\right) \\ $$$$\mathrm{2A}.{sin}\:\left(\frac{\:\pi}{\mathrm{7}}\:\right)\:=\:{sin}\left(\frac{\mathrm{4}\pi}{\mathrm{7}}\:\right)−{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right) \\ $$$$\:\:\:\:\:\:\:\:+\:{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)\:+\:{sin}\left(\frac{\mathrm{6}\pi}{\mathrm{7}}\right)−{sin}\left(\frac{\mathrm{4}\pi}{\mathrm{7}}\right) \\ $$$$\:\mathrm{2A}\:.\:{sin}\left(\frac{\pi}{\mathrm{7}}\:\right)=\:{sin}\left(\pi−\frac{\pi}{\mathrm{7}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{A}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n} \\ $$$$ \\ $$

Commented by mathdanisur last updated on 23/Sep/21

Very nice solution, thankyou Ser

$$\mathrm{Very}\:\mathrm{nice}\:\mathrm{solution},\:\mathrm{thankyou}\:\boldsymbol{\mathrm{S}}\mathrm{er} \\ $$

Commented by mnjuly1970 last updated on 23/Sep/21

 thsnkz alot sir

$$\:{thsnkz}\:{alot}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com