Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 154547 by peter frank last updated on 19/Sep/21

A particle is projected inside the tunnel  which is 4m high.if  the initial speed  is V_o .show that the maximum  range inside the tunnel is given  by      R=4(√2) (√((V_o ^2 /g)−8))

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{projected}\:\mathrm{inside}\:\mathrm{the}\:\mathrm{tunnel} \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{4m}\:\mathrm{high}.\mathrm{if}\:\:\mathrm{the}\:\mathrm{initial}\:\mathrm{speed} \\ $$$$\mathrm{is}\:\mathrm{V}_{\mathrm{o}} .\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{maximum} \\ $$$$\mathrm{range}\:\mathrm{inside}\:\mathrm{the}\:\mathrm{tunnel}\:\mathrm{is}\:\mathrm{given} \\ $$$$\mathrm{by}\:\:\:\:\:\:\mathrm{R}=\mathrm{4}\sqrt{\mathrm{2}}\:\sqrt{\frac{\mathrm{V}_{\mathrm{o}} ^{\mathrm{2}} }{\mathrm{g}}−\mathrm{8}} \\ $$

Answered by peter frank last updated on 20/Sep/21

Commented by peter frank last updated on 20/Sep/21

Range=((2v_o ^2 sin θcos θ)/g)  H_(max) =((v_o ^2 sin^2 θ)/g)=4m  sin^2 θ=((8g)/v_o ^2 )      sin θ=((2(√(2g)))/v_o )  cos^2 θ=(√(1−sin^2 θ))  cos θ=(1/v_o )(√(v_o ^2 −8g))  Range=((2v_o ^2 sin θcos θ)/g)  Range=((2v_o ^2  ((2(√(2g)))/v_o ) (1/v_o )(√(v_o ^2 −8g))  )/g)  R=((4(√(2g)))/g)(√(v_o ^2 −8g))  R=4(√2) ((√g)/g)(√(v_o ^2 −8g))  but  ((√g)/g)=(√(g/g^2 ))  R=4(√(2 )) .(√((g/g^2 )   v_o ^2 −8g))  R=4(√(2 )) .(√((1/g) . v_o ^2 −8g))  R=4(√(2 )) .(√((v_o ^2 /g)−8))

$$\mathrm{Range}=\frac{\mathrm{2v}_{\mathrm{o}} ^{\mathrm{2}} \mathrm{sin}\:\theta\mathrm{cos}\:\theta}{\mathrm{g}} \\ $$$$\mathrm{H}_{\mathrm{max}} =\frac{\mathrm{v}_{\mathrm{o}} ^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}{\mathrm{g}}=\mathrm{4m} \\ $$$$\mathrm{sin}\:^{\mathrm{2}} \theta=\frac{\mathrm{8g}}{\mathrm{v}_{\mathrm{o}} ^{\mathrm{2}} }\:\:\:\: \\ $$$$\mathrm{sin}\:\theta=\frac{\mathrm{2}\sqrt{\mathrm{2g}}}{\mathrm{v}_{\mathrm{o}} } \\ $$$$\mathrm{cos}\:^{\mathrm{2}} \theta=\sqrt{\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} \theta} \\ $$$$\mathrm{cos}\:\theta=\frac{\mathrm{1}}{\mathrm{v}_{\mathrm{o}} }\sqrt{\mathrm{v}_{\mathrm{o}} ^{\mathrm{2}} −\mathrm{8g}} \\ $$$$\mathrm{Range}=\frac{\mathrm{2v}_{\mathrm{o}} ^{\mathrm{2}} \mathrm{sin}\:\theta\mathrm{cos}\:\theta}{\mathrm{g}} \\ $$$$\mathrm{Range}=\frac{\mathrm{2v}_{\mathrm{o}} ^{\mathrm{2}} \:\frac{\mathrm{2}\sqrt{\mathrm{2g}}}{\mathrm{v}_{\mathrm{o}} }\:\frac{\mathrm{1}}{\mathrm{v}_{\mathrm{o}} }\sqrt{\mathrm{v}_{\mathrm{o}} ^{\mathrm{2}} −\mathrm{8g}}\:\:}{\mathrm{g}} \\ $$$$\mathrm{R}=\frac{\mathrm{4}\sqrt{\mathrm{2g}}}{\mathrm{g}}\sqrt{\mathrm{v}_{\mathrm{o}} ^{\mathrm{2}} −\mathrm{8g}} \\ $$$$\mathrm{R}=\mathrm{4}\sqrt{\mathrm{2}}\:\frac{\sqrt{\mathrm{g}}}{\mathrm{g}}\sqrt{\mathrm{v}_{\mathrm{o}} ^{\mathrm{2}} −\mathrm{8g}} \\ $$$$\mathrm{but}\:\:\frac{\sqrt{\mathrm{g}}}{\mathrm{g}}=\sqrt{\frac{\mathrm{g}}{\mathrm{g}^{\mathrm{2}} }} \\ $$$$\mathrm{R}=\mathrm{4}\sqrt{\mathrm{2}\:}\:.\sqrt{\frac{\mathrm{g}}{\mathrm{g}^{\mathrm{2}} }\:\:\:\mathrm{v}_{\mathrm{o}} ^{\mathrm{2}} −\mathrm{8g}} \\ $$$$\mathrm{R}=\mathrm{4}\sqrt{\mathrm{2}\:}\:.\sqrt{\frac{\mathrm{1}}{\mathrm{g}}\:.\:\mathrm{v}_{\mathrm{o}} ^{\mathrm{2}} −\mathrm{8g}} \\ $$$$\mathrm{R}=\mathrm{4}\sqrt{\mathrm{2}\:}\:.\sqrt{\frac{\mathrm{v}_{\mathrm{o}} ^{\mathrm{2}} }{\mathrm{g}}−\mathrm{8}} \\ $$$$ \\ $$

Commented by mr W last updated on 20/Sep/21

well solved!

$${well}\:{solved}! \\ $$

Commented by peter frank last updated on 21/Sep/21

thank you.

$$\mathrm{thank}\:\mathrm{you}. \\ $$

Commented by Tawa11 last updated on 21/Sep/21

nice sir

$$\mathrm{nice}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com