Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 154469 by mnjuly1970 last updated on 18/Sep/21

  prove:∫_0 ^( 1) ln (4− 2x +x^( 2) )dx =2ln((2/e)) +(π/( (√3)))

$$ \\ $$$${prove}:\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\:\left(\mathrm{4}−\:\mathrm{2}{x}\:+{x}^{\:\mathrm{2}} \right){dx}\:=\mathrm{2}{ln}\left(\frac{\mathrm{2}}{{e}}\right)\:+\frac{\pi}{\:\sqrt{\mathrm{3}}} \\ $$$$ \\ $$

Answered by ARUNG_Brandon_MBU last updated on 18/Sep/21

I=∫_0 ^1 ln(4−2x+x^2 )dx=∫_0 ^1 ln(3+(1−x)^2 )dx    =∫_0 ^1 ln(3+x^2 )dx=[xln(3+x^2 )]_0 ^1 −∫_0 ^1 ((2x^2 )/(x^2 +3))dx    =ln4−2∫_0 ^1 (1−(3/(x^2 +3)))dx=2ln2−2+2(√3)[tan^(−1) ((x/( (√3))))]_0 ^1     =2ln2−2lne+((√3)/3)π=2ln((2/e))+(π/( (√3)))

$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{4}−\mathrm{2}{x}+{x}^{\mathrm{2}} \right){dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{3}+\left(\mathrm{1}−{x}\right)^{\mathrm{2}} \right){dx} \\ $$$$\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{3}+{x}^{\mathrm{2}} \right){dx}=\left[{x}\mathrm{ln}\left(\mathrm{3}+{x}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\mathrm{3}}{dx} \\ $$$$\:\:=\mathrm{ln4}−\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\frac{\mathrm{3}}{{x}^{\mathrm{2}} +\mathrm{3}}\right){dx}=\mathrm{2ln2}−\mathrm{2}+\mathrm{2}\sqrt{\mathrm{3}}\left[\mathrm{tan}^{−\mathrm{1}} \left(\frac{{x}}{\:\sqrt{\mathrm{3}}}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\:\:=\mathrm{2ln2}−\mathrm{2ln}{e}+\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\pi=\mathrm{2ln}\left(\frac{\mathrm{2}}{{e}}\right)+\frac{\pi}{\:\sqrt{\mathrm{3}}} \\ $$

Commented by mnjuly1970 last updated on 18/Sep/21

  grateful..very nice solution..

$$\:\:{grateful}..{very}\:{nice}\:{solution}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com