Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 154421 by peter frank last updated on 18/Sep/21

∫[((x/e))^x +((e/x))^x ]ln xdx

$$\int\left[\left(\frac{\mathrm{x}}{\mathrm{e}}\right)^{\mathrm{x}} +\left(\frac{\mathrm{e}}{\mathrm{x}}\right)^{\mathrm{x}} \right]\mathrm{ln}\:\mathrm{xdx} \\ $$

Answered by puissant last updated on 18/Sep/21

Q=∫[((x/e))^x +((e/x))^x ]lnx dx   =∫((x^x lnx)/e^x )dx + ∫((e^x lnx)/x^x )dx  I=∫((x^x lnx)/e^x )dx = ∫e^(xlnx) e^(−x) lnx dx  =∫e^((xlnx−x)) lnx dx   u=xlnx−x ⇒ du=lnxdx  ⇒ I=∫e^u du = e^u +C = e^(x(lnx−1)) +C..  J=∫((e^x lnx)/x^x )dx = ∫e^x e^(−xlnx) lnx dx  =∫e^((x−xlnx)) lnx dx   t=x−xlnx → dt=−lnxdx  ⇒ J=−∫e^t dt = −e^t +C = −e^(x(1−lnx)) +C..        Q = I + J..    ∴∵  Q= e^(x(lnx−1)) −e^(x(1−lnx)) +C...

$${Q}=\int\left[\left(\frac{{x}}{{e}}\right)^{{x}} +\left(\frac{{e}}{{x}}\right)^{{x}} \right]{lnx}\:{dx}\: \\ $$$$=\int\frac{{x}^{{x}} {lnx}}{{e}^{{x}} }{dx}\:+\:\int\frac{{e}^{{x}} {lnx}}{{x}^{{x}} }{dx} \\ $$$${I}=\int\frac{{x}^{{x}} {lnx}}{{e}^{{x}} }{dx}\:=\:\int{e}^{{xlnx}} {e}^{−{x}} {lnx}\:{dx} \\ $$$$=\int{e}^{\left({xlnx}−{x}\right)} {lnx}\:{dx}\: \\ $$$${u}={xlnx}−{x}\:\Rightarrow\:{du}={lnxdx} \\ $$$$\Rightarrow\:{I}=\int{e}^{{u}} {du}\:=\:{e}^{{u}} +{C}\:=\:{e}^{{x}\left({lnx}−\mathrm{1}\right)} +{C}.. \\ $$$${J}=\int\frac{{e}^{{x}} {lnx}}{{x}^{{x}} }{dx}\:=\:\int{e}^{{x}} {e}^{−{xlnx}} {lnx}\:{dx} \\ $$$$=\int{e}^{\left({x}−{xlnx}\right)} {lnx}\:{dx}\: \\ $$$${t}={x}−{xlnx}\:\rightarrow\:{dt}=−{lnxdx} \\ $$$$\Rightarrow\:{J}=−\int{e}^{{t}} {dt}\:=\:−{e}^{{t}} +{C}\:=\:−{e}^{{x}\left(\mathrm{1}−{lnx}\right)} +{C}.. \\ $$$$\:\:\:\:\:\:{Q}\:=\:{I}\:+\:{J}.. \\ $$$$ \\ $$$$\therefore\because\:\:{Q}=\:{e}^{{x}\left({lnx}−\mathrm{1}\right)} −{e}^{{x}\left(\mathrm{1}−{lnx}\right)} +{C}... \\ $$

Commented by peter frank last updated on 19/Sep/21

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Answered by peter frank last updated on 19/Sep/21

((x/e))^x =u      ((e/x))^x =(1/u)  x[ln x−ln e]=ln u  lnxdx=(1/u)du  ∫[u+(1/u)]ln xdx=∫((1+u^2 )/u).(1/u)du  ∫(du+(1/u^2 )du)  =u−(1/u)+C  ((x/e))^x −((e/x))^x +C

$$\left(\frac{\mathrm{x}}{\mathrm{e}}\right)^{\mathrm{x}} =\mathrm{u}\:\:\:\:\:\:\left(\frac{\mathrm{e}}{\mathrm{x}}\right)^{\mathrm{x}} =\frac{\mathrm{1}}{\mathrm{u}} \\ $$$$\mathrm{x}\left[\mathrm{ln}\:\mathrm{x}−\mathrm{ln}\:\mathrm{e}\right]=\mathrm{ln}\:\mathrm{u} \\ $$$$\mathrm{lnxdx}=\frac{\mathrm{1}}{\mathrm{u}}\mathrm{du} \\ $$$$\int\left[\mathrm{u}+\frac{\mathrm{1}}{\mathrm{u}}\right]\mathrm{ln}\:\mathrm{xdx}=\int\frac{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }{\mathrm{u}}.\frac{\mathrm{1}}{\mathrm{u}}\mathrm{du} \\ $$$$\int\left(\mathrm{du}+\frac{\mathrm{1}}{\mathrm{u}^{\mathrm{2}} }\mathrm{du}\right) \\ $$$$=\mathrm{u}−\frac{\mathrm{1}}{\mathrm{u}}+\mathrm{C} \\ $$$$\left(\frac{\mathrm{x}}{\mathrm{e}}\right)^{\mathrm{x}} −\left(\frac{\mathrm{e}}{\mathrm{x}}\right)^{\mathrm{x}} +\mathrm{C} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com