All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 1543 by 112358 last updated on 17/Aug/15
Leta,b∈R.Showthat∣∣a∣−∣b∣∣⩽∣a−b∣.
Answered by Rasheed Soomro last updated on 18/Aug/15
Alternativeway,technicallysimpler.∣∣a∣−∣b∣∣⩽∣a−b∣......................(I)Let∣a∣=xand∣b∣=y,Clearlyx,y⩾0∣a∣=x⇒a=±xand∣b∣=±yBysubstitutingin(I)wehavefoursimplerinequalities:∣x−y∣⩽∣(+x)−(+y)∣=∣x−y∣......................(II)⩽∣(+x)−(−y)∣=∣x+y∣.......(III)⩽∣(−x)−(+y)∣=∣−(x+y)∣=∣x+y∣..........(IV)⩽∣(−x)−(−y)∣=∣−(x−y)∣=∣x−y∣.....(V)(II)and(V)areobvious.For(III)and(IV)weproceedasfollowx−y⩽x+yforxandyareboth+ve.∴∣x−y∣⩽∣x+y∣Since(II),(III),(IV)and(V)aretrue.Itimpliesthat∣∣a∣−∣b∣∣⩽∣a−b∣
Answered by 123456 last updated on 17/Aug/15
wehavethat0⩽∣a+b∣⩽∣a∣+∣b∣0⩽∣a+(b−a)∣⩽∣a∣+∣b−a∣⇒−∣a∣⩽∣b−a∣0⩽∣b∣⩽∣a∣+∣b−a∣⇒∣a∣⩽∣a+b∣⩽∣a∣+∣b∣⩽2∣a∣+∣b−a∣−∣a∣⩽∣b∣−∣a∣⩽∣b−a∣wehave−∣a∣⩽∣a∣⩽∣b−a∣⇒−∣b−a∣⩽−∣a∣⩽∣a∣−∣b−a∣⩽−∣a∣⩽∣b∣−∣a∣⩽∣b−a∣∣∣b∣−∣a∣∣⩽∣b−a∣
Terms of Service
Privacy Policy
Contact: info@tinkutara.com