Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 154020 by mnjuly1970 last updated on 13/Sep/21

Commented by mr W last updated on 13/Sep/21

i think there is not enough info.

$${i}\:{think}\:{there}\:{is}\:{not}\:{enough}\:{info}. \\ $$

Commented by mr W last updated on 13/Sep/21

maybe you didn′t show the complete  question?

$${maybe}\:{you}\:{didn}'{t}\:{show}\:{the}\:{complete} \\ $$$${question}? \\ $$

Commented by talminator2856791 last updated on 13/Sep/21

 he want general answer.

$$\:\mathrm{he}\:\mathrm{want}\:\mathrm{general}\:\mathrm{answer}. \\ $$

Commented by mr W last updated on 13/Sep/21

if the condition is not given, there  is no answer, also no general answer.  x can be any position value with  given information.

$${if}\:{the}\:{condition}\:{is}\:{not}\:{given},\:{there} \\ $$$${is}\:{no}\:{answer},\:{also}\:{no}\:{general}\:{answer}. \\ $$$${x}\:{can}\:{be}\:{any}\:{position}\:{value}\:{with} \\ $$$${given}\:{information}. \\ $$

Commented by talminator2856791 last updated on 13/Sep/21

 there is a condition.   the given information is enough   for some general form.   just give the angles and sides variables    and solve like that.    i.e applying heron′s formula    and then making x the subject    of the formula.

$$\:\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{condition}. \\ $$$$\:\mathrm{the}\:\mathrm{given}\:\mathrm{information}\:\mathrm{is}\:\mathrm{enough} \\ $$$$\:\mathrm{for}\:\mathrm{some}\:\mathrm{general}\:\mathrm{form}. \\ $$$$\:\mathrm{just}\:\mathrm{give}\:\mathrm{the}\:\mathrm{angles}\:\mathrm{and}\:\mathrm{sides}\:\mathrm{variables}\: \\ $$$$\:\mathrm{and}\:\mathrm{solve}\:\mathrm{like}\:\mathrm{that}. \\ $$$$\:\:\mathrm{i}.\mathrm{e}\:\mathrm{applying}\:\mathrm{heron}'\mathrm{s}\:\mathrm{formula} \\ $$$$\:\:\mathrm{and}\:\mathrm{then}\:\mathrm{making}\:{x}\:\mathrm{the}\:\mathrm{subject} \\ $$$$\:\:\mathrm{of}\:\mathrm{the}\:\mathrm{formula}. \\ $$

Commented by mr W last updated on 13/Sep/21

i don′t need any formula, i only need  the logic in order to see that the area  ? can not be determined with the  conditions given in the question.

$${i}\:{don}'{t}\:{need}\:{any}\:{formula},\:{i}\:{only}\:{need} \\ $$$${the}\:{logic}\:{in}\:{order}\:{to}\:{see}\:{that}\:{the}\:{area} \\ $$$$?\:{can}\:{not}\:{be}\:{determined}\:{with}\:{the} \\ $$$${conditions}\:{given}\:{in}\:{the}\:{question}. \\ $$

Commented by mr W last updated on 13/Sep/21

we need an additional condition, for  example that the height of the  triangle is of the same size of its  base.

$${we}\:{need}\:{an}\:{additional}\:{condition},\:{for} \\ $$$${example}\:{that}\:{the}\:{height}\:{of}\:{the} \\ $$$${triangle}\:{is}\:{of}\:{the}\:{same}\:{size}\:{of}\:{its} \\ $$$${base}. \\ $$

Answered by lyubita last updated on 13/Sep/21

1 cm^2

$$\mathrm{1}\:{cm}^{\mathrm{2}} \\ $$

Answered by lyubita last updated on 13/Sep/21

x + 8 = perfect square  x + 8 + 16 = perfect square  the only solution x = 1

$${x}\:+\:\mathrm{8}\:=\:{perfect}\:{square} \\ $$$${x}\:+\:\mathrm{8}\:+\:\mathrm{16}\:=\:{perfect}\:{square} \\ $$$${the}\:{only}\:{solution}\:{x}\:=\:\mathrm{1} \\ $$

Commented by mr W last updated on 13/Sep/21

who said it should be perfect square.  i can also say, they are:  16=2^4 , 8=2^3 , x=2^2 =4.    if the rule is not defined, x can be  any positive value you want it to have.    i think it makes no sense trying to  solve a question which is not clear

$${who}\:{said}\:{it}\:{should}\:{be}\:{perfect}\:{square}. \\ $$$${i}\:{can}\:{also}\:{say},\:{they}\:{are}: \\ $$$$\mathrm{16}=\mathrm{2}^{\mathrm{4}} ,\:\mathrm{8}=\mathrm{2}^{\mathrm{3}} ,\:{x}=\mathrm{2}^{\mathrm{2}} =\mathrm{4}. \\ $$$$ \\ $$$${if}\:{the}\:{rule}\:{is}\:{not}\:{defined},\:{x}\:{can}\:{be} \\ $$$${any}\:{positive}\:{value}\:{you}\:{want}\:{it}\:{to}\:{have}. \\ $$$$ \\ $$$${i}\:{think}\:{it}\:{makes}\:{no}\:{sense}\:{trying}\:{to} \\ $$$${solve}\:{a}\:{question}\:{which}\:{is}\:{not}\:{clear} \\ $$

Commented by Rasheed.Sindhi last updated on 13/Sep/21

Yes sir. After all this is a math-forum,  so  clarity is necessary.

$${Yes}\:{sir}.\:{After}\:{all}\:{this}\:{is}\:{a}\:{math}-{forum}, \\ $$$${so}\:\:{clarity}\:{is}\:{necessary}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com