Question Number 153956 by liberty last updated on 12/Sep/21 | ||
$$\:{Max}\:\&\:{min}\:{value}\:{of}\:{function} \\ $$ $$\:{f}\left({x}\right)=\sqrt{\mathrm{6}−{x}}\:+\sqrt{\mathrm{12}+{x}}\:. \\ $$ | ||
Answered by EDWIN88 last updated on 12/Sep/21 | ||
$$\:{domain}\:{of}\:{f}\left({x}\right)\:=\:\left[−\mathrm{12},\mathrm{6}\:\right] \\ $$ $${by}\:{Chaucy}\:−{Schward}\:{inequality} \\ $$ $$\mathrm{2}\left[\left(\mathrm{6}−{x}\right)+\left(\mathrm{12}+{x}\right)\:\right]\geqslant\:\left(\sqrt{\mathrm{6}−{x}}+\sqrt{\mathrm{12}+{x}}\:\right)^{\mathrm{2}} \\ $$ $$\mathrm{2}×\mathrm{18}\:\geqslant\:\left[\:\sqrt{\mathrm{6}−{x}}\:+\sqrt{\mathrm{12}+{x}}\:\right]^{\mathrm{2}} \\ $$ $$\Rightarrow\sqrt{\mathrm{18}}\:\leqslant\:\sqrt{\mathrm{6}−{x}}\:+\sqrt{\mathrm{12}+{x}}\:\leqslant\:\sqrt{\mathrm{36}} \\ $$ $$\Rightarrow\mathrm{3}\sqrt{\mathrm{2}}\:\leqslant\:\sqrt{\mathrm{6}−{x}}\:+\sqrt{\mathrm{12}+{x}}\:\leqslant\:\mathrm{6} \\ $$ $$\:\begin{cases}{{min}=\mathrm{3}\sqrt{\mathrm{2}}}\\{{max}=\mathrm{6}}\end{cases} \\ $$ | ||
Commented byliberty last updated on 13/Sep/21 | ||
$${yes}\:{correct} \\ $$ | ||
Answered by ajfour last updated on 15/Sep/21 | ||
$${let}\:\:{x}−\mathrm{3}={t} \\ $$ $${f}\left({t}\right)=\sqrt{\mathrm{9}−{t}}+\sqrt{\mathrm{9}+{t}} \\ $$ $$\Rightarrow\:\:\:\:\:{t}\in\left[−\mathrm{9},\mathrm{9}\right] \\ $$ $${f}^{\:\mathrm{2}} \left({t}\right)=\mathrm{18}+\mathrm{2}\sqrt{\mathrm{81}−{t}^{\mathrm{2}} } \\ $$ $${clearly}\:{f}_{{min}} =\mathrm{3}\sqrt{\mathrm{2}},\:\:{f}_{{max}} =\mathrm{6} \\ $$ | ||