Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 153949 by talminator2856791 last updated on 12/Sep/21

             ∫_0 ^( ∞)  sin(x^2 )cos(x^3 )dx

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{sin}\left({x}^{\mathrm{2}} \right)\mathrm{cos}\left({x}^{\mathrm{3}} \right){dx} \\ $$$$\: \\ $$

Answered by mindispower last updated on 16/Sep/21

=Im∫_0 ^∞ e^(ix^2 ) cos(x^3 )dx  A=∫_0 ^∞ e^(−ix^2 ) cos(x^3 )dx  Ai(z)=(e^(−(2/3)z^(3/2) ) /π)∫_0 ^∞ e^(−(√z)t^2 ) cos((t^3 /3))dt...1  Airy Function integral representation  t⇒y.(3)^(1/3)   Ai(z)=k(z)∫_0 ^∞ e^(−(√z).y^2 (3)^(2/3) ) .3^(1/3) cos4(y^3 )d  Ai(−(1/3^(4/3) ))=K(−(1/3^(4/3) ))3^(1/3) ∫_0 ^∞ e^(−iy^2 ) cos(y^3 )dy  (e^(−(2/(27)).e^((3πi)/2) ) /π)A  A=πe^(−(2/(27))i) .((Ai(−(1/3^(4/3) )))/( (3)^(1/3) ))  ∫_0 ^∞ sin(x^2 )cos(x^3 )dx=−ImA  =−(π/( (3)^(1/3) ))sin(−(2/(27)))Ai(−(1/3^(4/3) ))  =((πsin((2/(27)))A_i (−(1/(3(3)^(1/3) ))))/( (3)^(1/3) ))  wherre A_i ...Airy function  ∫_0 ^∞ sin(x^2 )cos(x^3 )dx=((πsin((2/(27)))A_i (−(1/(3(3)^(1/3) ))))/( (3)^(1/3) ))

$$={Im}\int_{\mathrm{0}} ^{\infty} {e}^{{ix}^{\mathrm{2}} } {cos}\left({x}^{\mathrm{3}} \right){dx} \\ $$$${A}=\int_{\mathrm{0}} ^{\infty} {e}^{−{ix}^{\mathrm{2}} } {cos}\left({x}^{\mathrm{3}} \right){dx} \\ $$$${Ai}\left({z}\right)=\frac{{e}^{−\frac{\mathrm{2}}{\mathrm{3}}{z}^{\frac{\mathrm{3}}{\mathrm{2}}} } }{\pi}\int_{\mathrm{0}} ^{\infty} {e}^{−\sqrt{{z}}{t}^{\mathrm{2}} } {cos}\left(\frac{{t}^{\mathrm{3}} }{\mathrm{3}}\right){dt}...\mathrm{1} \\ $$$${Airy}\:{Function}\:{integral}\:{representation} \\ $$$${t}\Rightarrow{y}.\left(\mathrm{3}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$${Ai}\left({z}\right)={k}\left({z}\right)\int_{\mathrm{0}} ^{\infty} {e}^{−\sqrt{{z}}.{y}^{\mathrm{2}} \left(\mathrm{3}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} } .\mathrm{3}^{\frac{\mathrm{1}}{\mathrm{3}}} {cos}\mathrm{4}\left({y}^{\mathrm{3}} \right){d} \\ $$$${Ai}\left(−\frac{\mathrm{1}}{\mathrm{3}^{\frac{\mathrm{4}}{\mathrm{3}}} }\right)={K}\left(−\frac{\mathrm{1}}{\mathrm{3}^{\frac{\mathrm{4}}{\mathrm{3}}} }\right)\mathrm{3}^{\frac{\mathrm{1}}{\mathrm{3}}} \int_{\mathrm{0}} ^{\infty} {e}^{−{iy}^{\mathrm{2}} } {cos}\left({y}^{\mathrm{3}} \right){dy} \\ $$$$\frac{{e}^{−\frac{\mathrm{2}}{\mathrm{27}}.{e}^{\frac{\mathrm{3}\pi{i}}{\mathrm{2}}} } }{\pi}{A} \\ $$$${A}=\pi{e}^{−\frac{\mathrm{2}}{\mathrm{27}}{i}} .\frac{{Ai}\left(−\frac{\mathrm{1}}{\mathrm{3}^{\frac{\mathrm{4}}{\mathrm{3}}} }\right)}{\:\sqrt[{\mathrm{3}}]{\mathrm{3}}} \\ $$$$\int_{\mathrm{0}} ^{\infty} {sin}\left({x}^{\mathrm{2}} \right){cos}\left({x}^{\mathrm{3}} \right){dx}=−{ImA} \\ $$$$=−\frac{\pi}{\:\sqrt[{\mathrm{3}}]{\mathrm{3}}}{sin}\left(−\frac{\mathrm{2}}{\mathrm{27}}\right){Ai}\left(−\frac{\mathrm{1}}{\mathrm{3}^{\frac{\mathrm{4}}{\mathrm{3}}} }\right) \\ $$$$=\frac{\pi{sin}\left(\frac{\mathrm{2}}{\mathrm{27}}\right){A}_{{i}} \left(−\frac{\mathrm{1}}{\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{3}}}\right)}{\:\sqrt[{\mathrm{3}}]{\mathrm{3}}} \\ $$$${wherre}\:{A}_{{i}} ...{Airy}\:{function} \\ $$$$\int_{\mathrm{0}} ^{\infty} {sin}\left({x}^{\mathrm{2}} \right){cos}\left({x}^{\mathrm{3}} \right){dx}=\frac{\pi{sin}\left(\frac{\mathrm{2}}{\mathrm{27}}\right){A}_{{i}} \left(−\frac{\mathrm{1}}{\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{3}}}\right)}{\:\sqrt[{\mathrm{3}}]{\mathrm{3}}} \\ $$$$ \\ $$$$ \\ $$

Commented by talminator2856791 last updated on 23/Sep/21

 integral master!

$$\:\mathrm{integral}\:\mathrm{master}!\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com