Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 1539 by 314159 last updated on 17/Aug/15

Find Σ_(n=1) ^∞ (1/((2n−1)^4 )).

$$\boldsymbol{\mathrm{Find}}\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}\boldsymbol{\mathrm{n}}−\mathrm{1}\right)^{\mathrm{4}} }. \\ $$

Answered by 123456 last updated on 17/Aug/15

Σ_(n=1) ^(+∞) (1/n^4 )=Σ_(n=1) ^(+∞) (1/((2n−1)^4 ))+Σ_(n=1) ^(+∞) (1/((2n)^4 ))  Σ_(n=1) ^(+∞) (1/n^4 )=Σ_(n=1) ^(+∞) (1/((2n−1)^4 ))+(1/(16))Σ_(n=1) ^(+∞) (1/n^4 )  Σ_(n=1) ^(+∞) (1/((2n−1)^4 ))=Σ_(n=1) ^(+∞) (1/n^4 )−(1/(16))Σ_(n=1) ^(+∞) (1/n^4 )  Σ_(n=1) ^(+∞) (1/((2n−1)^4 ))=((15)/(16))Σ_(n=1) ^(+∞) (1/n^4 )  Σ_(n=1) ^(+∞) (1/((2n−1)^4 ))=((15)/(16))×(π^4 /(90))=((15π^4 )/(16×90))=((5π^4 )/(16×30))=(π^4 /(16×6))=(π^4 /(96))  Σ_(n=1) ^(+∞) (1/((2n−1)^4 ))=(π^4 /(96))

$$\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{4}} }=\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{4}} }+\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}\right)^{\mathrm{4}} } \\ $$$$\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{4}} }=\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{4}} }+\frac{\mathrm{1}}{\mathrm{16}}\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{4}} } \\ $$$$\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{4}} }=\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{4}} }−\frac{\mathrm{1}}{\mathrm{16}}\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{4}} } \\ $$$$\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{4}} }=\frac{\mathrm{15}}{\mathrm{16}}\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{4}} } \\ $$$$\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{4}} }=\frac{\mathrm{15}}{\mathrm{16}}×\frac{\pi^{\mathrm{4}} }{\mathrm{90}}=\frac{\mathrm{15}\pi^{\mathrm{4}} }{\mathrm{16}×\mathrm{90}}=\frac{\mathrm{5}\pi^{\mathrm{4}} }{\mathrm{16}×\mathrm{30}}=\frac{\pi^{\mathrm{4}} }{\mathrm{16}×\mathrm{6}}=\frac{\pi^{\mathrm{4}} }{\mathrm{96}} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{4}} }=\frac{\pi^{\mathrm{4}} }{\mathrm{96}} \\ $$

Commented by 314159 last updated on 17/Aug/15

Thank a lot...

$$\boldsymbol{\mathrm{Thank}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{lot}}... \\ $$

Commented by 112358 last updated on 17/Aug/15

Out of curiosity, how is                   Σ_(n=1) ^(+∞) (1/n^4 )=(π^4 /(90))  ?

$${Out}\:{of}\:{curiosity},\:{how}\:{is} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{4}} }=\frac{\pi^{\mathrm{4}} }{\mathrm{90}}\:\:?\: \\ $$$$ \\ $$

Commented by 123456 last updated on 17/Aug/15

rieman zeta function, later i answer you

$$\mathrm{rieman}\:\mathrm{zeta}\:\mathrm{function},\:\mathrm{later}\:\mathrm{i}\:\mathrm{answer}\:\mathrm{you} \\ $$

Commented by 112358 last updated on 17/Aug/15

Thanks

$${Thanks}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com