Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 153840 by liberty last updated on 11/Sep/21

    log _e (x)+log _x (e)+log _(((e/x))) (x)=(5/2)   x=?

$$\:\:\:\:\mathrm{log}\:_{{e}} \left({x}\right)+\mathrm{log}\:_{{x}} \left({e}\right)+\mathrm{log}\:_{\left(\frac{{e}}{{x}}\right)} \left({x}\right)=\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\:{x}=? \\ $$

Answered by Rasheed.Sindhi last updated on 11/Sep/21

 log _e (x)+log _x (e)+log _(((e/x))) (x)=(5/2)  ((log_e  x)/(log_e  e))+((log_e e)/(log_e x))+((log_e x)/(log_e ((e/x))))=(5/2)  log_e  x+(1/(log_e  x))+((log_e  x)/(log_e e−log_e  x))=(5/2)  log_e  x+(1/(log_e  x))+((log_e  x)/(1−log_e  x))=(5/2)  log_e  x=y (say)  y+(1/y)+(y/(1−y))=(5/2)  y(2y(1−y))+2(1−y)+2y^2 =5y(1−y)  2y^2 −2y^3 +2−2y+2y^2 −5y+5y^2 =0  2y^3 −9y^2 +7y−2=0  ....  ...

$$\:\mathrm{log}\:_{{e}} \left({x}\right)+\mathrm{log}\:_{{x}} \left({e}\right)+\mathrm{log}\:_{\left(\frac{{e}}{{x}}\right)} \left({x}\right)=\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\frac{\mathrm{log}_{\mathrm{e}} \:\mathrm{x}}{\mathrm{log}_{\mathrm{e}} \:\mathrm{e}}+\frac{\mathrm{log}_{\mathrm{e}} \mathrm{e}}{\mathrm{log}_{\mathrm{e}} \mathrm{x}}+\frac{\mathrm{log}_{\mathrm{e}} \mathrm{x}}{\mathrm{log}_{\mathrm{e}} \left(\frac{\mathrm{e}}{\mathrm{x}}\right)}=\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\mathrm{log}_{\mathrm{e}} \:\mathrm{x}+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{e}} \:\mathrm{x}}+\frac{\mathrm{log}_{\mathrm{e}} \:\mathrm{x}}{\mathrm{log}_{\mathrm{e}} \mathrm{e}−\mathrm{log}_{\mathrm{e}} \:\mathrm{x}}=\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\mathrm{log}_{\mathrm{e}} \:\mathrm{x}+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{e}} \:\mathrm{x}}+\frac{\mathrm{log}_{\mathrm{e}} \:\mathrm{x}}{\mathrm{1}−\mathrm{log}_{\mathrm{e}} \:\mathrm{x}}=\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\mathrm{log}_{\mathrm{e}} \:\mathrm{x}=\mathrm{y}\:\left(\mathrm{say}\right) \\ $$$$\mathrm{y}+\frac{\mathrm{1}}{\mathrm{y}}+\frac{\mathrm{y}}{\mathrm{1}−\mathrm{y}}=\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\mathrm{y}\left(\mathrm{2y}\left(\mathrm{1}−\mathrm{y}\right)\right)+\mathrm{2}\left(\mathrm{1}−\mathrm{y}\right)+\mathrm{2y}^{\mathrm{2}} =\mathrm{5y}\left(\mathrm{1}−\mathrm{y}\right) \\ $$$$\mathrm{2y}^{\mathrm{2}} −\mathrm{2y}^{\mathrm{3}} +\mathrm{2}−\mathrm{2y}+\mathrm{2y}^{\mathrm{2}} −\mathrm{5y}+\mathrm{5y}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{2y}^{\mathrm{3}} −\mathrm{9y}^{\mathrm{2}} +\mathrm{7y}−\mathrm{2}=\mathrm{0} \\ $$$$.... \\ $$$$... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com