Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 153596 by SANOGO last updated on 08/Sep/21

Commented by SANOGO last updated on 08/Sep/21

merci bien

$${merci}\:{bien} \\ $$

Commented by SANOGO last updated on 08/Sep/21

merci bien

$${merci}\:{bien} \\ $$

Commented by tabata last updated on 08/Sep/21

16) A= lim_(x→∞)   ( ((e^x +1)/(x+2)))^(1/(x+1))  ⇒ ln A =lim_(x→∞)  ((ln(((e^x +1)/(x+2))))/(x+1))    lnA =lim_(x→∞)  (((x+2)e^x −(e^x +1))/((x+2)^2 )) × (((x+2))/((e^x +1)))    lnA = lim_(x→∞)  (e^x − (1/(x+2))) = ∞     ⇒ A = e^∞ = ∞    ⟨ M . T  ⟩

$$\left.\mathrm{16}\right)\:\boldsymbol{{A}}=\:\boldsymbol{{lim}}_{\boldsymbol{{x}}\rightarrow\infty} \:\:\left(\:\frac{\boldsymbol{{e}}^{\boldsymbol{{x}}} +\mathrm{1}}{\boldsymbol{{x}}+\mathrm{2}}\right)^{\frac{\mathrm{1}}{\boldsymbol{{x}}+\mathrm{1}}} \:\Rightarrow\:\boldsymbol{{ln}}\:\boldsymbol{{A}}\:=\boldsymbol{{lim}}_{\boldsymbol{{x}}\rightarrow\infty} \:\frac{\boldsymbol{{ln}}\left(\frac{\boldsymbol{{e}}^{\boldsymbol{{x}}} +\mathrm{1}}{\boldsymbol{{x}}+\mathrm{2}}\right)}{\boldsymbol{{x}}+\mathrm{1}} \\ $$$$ \\ $$$$\boldsymbol{{lnA}}\:=\boldsymbol{{lim}}_{\boldsymbol{{x}}\rightarrow\infty} \:\frac{\left(\boldsymbol{{x}}+\mathrm{2}\right)\boldsymbol{{e}}^{\boldsymbol{{x}}} −\left(\boldsymbol{{e}}^{\boldsymbol{{x}}} +\mathrm{1}\right)}{\left(\boldsymbol{{x}}+\mathrm{2}\right)^{\mathrm{2}} }\:×\:\frac{\left(\boldsymbol{{x}}+\mathrm{2}\right)}{\left(\boldsymbol{{e}}^{\boldsymbol{{x}}} +\mathrm{1}\right)} \\ $$$$ \\ $$$$\boldsymbol{{lnA}}\:=\:\boldsymbol{{lim}}_{\boldsymbol{{x}}\rightarrow\infty} \:\left(\boldsymbol{{e}}^{\boldsymbol{{x}}} −\:\frac{\mathrm{1}}{\boldsymbol{{x}}+\mathrm{2}}\right)\:=\:\infty\: \\ $$$$ \\ $$$$\Rightarrow\:\boldsymbol{{A}}\:=\:\boldsymbol{{e}}^{\infty} =\:\infty \\ $$$$ \\ $$$$\langle\:\boldsymbol{{M}}\:.\:\boldsymbol{{T}}\:\:\rangle \\ $$

Commented by tabata last updated on 08/Sep/21

17) y= lim_(x→0)   (ln (1+x))^(1/(lnx))  ⇒ ln y = lim_(x→0)  ((ln(ln(1+x)))/(lnx))    lny =lim_(x→0)  ( (1/(((1+x) ln(1+x))/(1/x)))) ⇒ lnA = lim_(x→0)  ((x/((x+1)ln(1+x))))    lnA =  lim_(x→0)  (1 −(1/((x+1)ln(1+x))))    lnA = 1 ⇒ A= e    ⟨ M . T  ⟩

$$\left.\mathrm{17}\right)\:\boldsymbol{{y}}=\:\boldsymbol{{lim}}_{\boldsymbol{{x}}\rightarrow\mathrm{0}} \:\:\left(\boldsymbol{{ln}}\:\left(\mathrm{1}+\boldsymbol{{x}}\right)\right)^{\frac{\mathrm{1}}{\boldsymbol{{lnx}}}} \:\Rightarrow\:\boldsymbol{{ln}}\:\boldsymbol{{y}}\:=\:\boldsymbol{{lim}}_{\boldsymbol{{x}}\rightarrow\mathrm{0}} \:\frac{\boldsymbol{{ln}}\left(\boldsymbol{{ln}}\left(\mathrm{1}+\boldsymbol{{x}}\right)\right)}{\boldsymbol{{lnx}}} \\ $$$$ \\ $$$$\boldsymbol{{lny}}\:=\boldsymbol{{lim}}_{\boldsymbol{{x}}\rightarrow\mathrm{0}} \:\left(\:\frac{\mathrm{1}}{\frac{\left(\mathrm{1}+\boldsymbol{{x}}\right)\:\boldsymbol{{ln}}\left(\mathrm{1}+\boldsymbol{{x}}\right)}{\frac{\mathrm{1}}{\boldsymbol{{x}}}}}\right)\:\Rightarrow\:\boldsymbol{{lnA}}\:=\:\boldsymbol{{lim}}_{\boldsymbol{{x}}\rightarrow\mathrm{0}} \:\left(\frac{\boldsymbol{{x}}}{\left(\boldsymbol{{x}}+\mathrm{1}\right)\boldsymbol{{ln}}\left(\mathrm{1}+\boldsymbol{{x}}\right)}\right) \\ $$$$ \\ $$$$\boldsymbol{{lnA}}\:=\:\:\boldsymbol{{lim}}_{\boldsymbol{{x}}\rightarrow\mathrm{0}} \:\left(\mathrm{1}\:−\frac{\mathrm{1}}{\left(\boldsymbol{{x}}+\mathrm{1}\right)\boldsymbol{{ln}}\left(\mathrm{1}+\boldsymbol{{x}}\right)}\right) \\ $$$$ \\ $$$$\boldsymbol{{lnA}}\:=\:\mathrm{1}\:\Rightarrow\:\boldsymbol{{A}}=\:\boldsymbol{{e}} \\ $$$$ \\ $$$$\langle\:\boldsymbol{{M}}\:.\:\boldsymbol{{T}}\:\:\rangle \\ $$

Commented by tabata last updated on 10/Sep/21

you are welcome

$$\boldsymbol{{you}}\:\boldsymbol{{are}}\:\boldsymbol{{welcome}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com