Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 153583 by pete last updated on 08/Sep/21

If fog(x)=((2x−1)/x) and g(x)=5x+2, find  f(x).

$$\mathrm{If}\:{fog}\left({x}\right)=\frac{\mathrm{2}{x}−\mathrm{1}}{{x}}\:\mathrm{and}\:\mathrm{g}\left({x}\right)=\mathrm{5}{x}+\mathrm{2},\:\mathrm{find} \\ $$$${f}\left({x}\right). \\ $$

Commented by otchereabdullai@gmail.com last updated on 08/Sep/21

nice question

$$\mathrm{nice}\:\mathrm{question} \\ $$

Commented by benhamimed last updated on 08/Sep/21

g(x)=y    ; x=((y−2)/5)  f(y)=((2((y−2)/5)−1)/((y−2)/5))=((2y−4−5)/(y−2))=((2y−9)/(y−2))  f(x)=((2x−9)/(x−2))

$${g}\left({x}\right)={y}\:\:\:\:;\:{x}=\frac{{y}−\mathrm{2}}{\mathrm{5}} \\ $$$${f}\left({y}\right)=\frac{\mathrm{2}\frac{{y}−\mathrm{2}}{\mathrm{5}}−\mathrm{1}}{\frac{{y}−\mathrm{2}}{\mathrm{5}}}=\frac{\mathrm{2}{y}−\mathrm{4}−\mathrm{5}}{{y}−\mathrm{2}}=\frac{\mathrm{2}{y}−\mathrm{9}}{{y}−\mathrm{2}} \\ $$$${f}\left({x}\right)=\frac{\mathrm{2}{x}−\mathrm{9}}{{x}−\mathrm{2}} \\ $$$$ \\ $$

Commented by pete last updated on 08/Sep/21

Thanks very much sir

$$\mathrm{Thanks}\:\mathrm{very}\:\mathrm{much}\:\mathrm{sir} \\ $$

Answered by liberty last updated on 08/Sep/21

f(g(x))=2−(1/x)   f(5x+2)=2−(1/x)  f(((5x+2−2)/5))=2−(1/((x−2)/5))  f(x)=2−(5/(x−2))=((2x−4−5)/(x−2))=((2x−9)/(x−2))

$${f}\left({g}\left({x}\right)\right)=\mathrm{2}−\frac{\mathrm{1}}{{x}} \\ $$$$\:{f}\left(\mathrm{5}{x}+\mathrm{2}\right)=\mathrm{2}−\frac{\mathrm{1}}{{x}} \\ $$$${f}\left(\frac{\mathrm{5}{x}+\mathrm{2}−\mathrm{2}}{\mathrm{5}}\right)=\mathrm{2}−\frac{\mathrm{1}}{\frac{{x}−\mathrm{2}}{\mathrm{5}}} \\ $$$${f}\left({x}\right)=\mathrm{2}−\frac{\mathrm{5}}{{x}−\mathrm{2}}=\frac{\mathrm{2}{x}−\mathrm{4}−\mathrm{5}}{{x}−\mathrm{2}}=\frac{\mathrm{2}{x}−\mathrm{9}}{{x}−\mathrm{2}} \\ $$

Commented by pete last updated on 08/Sep/21

Thank you sir

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by Rasheed.Sindhi last updated on 08/Sep/21

 fog(x)=((2x−1)/x);g(x)=5x+2;f(x)=?  f(5x+2)=((2x−1)/x)  Let 5x+2=y⇒x=((y−2)/5)  f(y)=((2(((y−2)/5))−1)/((y−2)/5))=((2y−4−5)/(y−2))=((2y−9)/(y−2))  y←x:  f(x)=((2x−9)/(x−2))

$$\:{fog}\left({x}\right)=\frac{\mathrm{2}{x}−\mathrm{1}}{{x}};\mathrm{g}\left({x}\right)=\mathrm{5}{x}+\mathrm{2};{f}\left({x}\right)=? \\ $$$${f}\left(\mathrm{5}{x}+\mathrm{2}\right)=\frac{\mathrm{2}{x}−\mathrm{1}}{{x}} \\ $$$${Let}\:\mathrm{5}{x}+\mathrm{2}={y}\Rightarrow{x}=\frac{{y}−\mathrm{2}}{\mathrm{5}} \\ $$$${f}\left({y}\right)=\frac{\mathrm{2}\left(\frac{{y}−\mathrm{2}}{\mathrm{5}}\right)−\mathrm{1}}{\frac{{y}−\mathrm{2}}{\mathrm{5}}}=\frac{\mathrm{2}{y}−\mathrm{4}−\mathrm{5}}{{y}−\mathrm{2}}=\frac{\mathrm{2}{y}−\mathrm{9}}{{y}−\mathrm{2}} \\ $$$${y}\leftarrow{x}: \\ $$$${f}\left({x}\right)=\frac{\mathrm{2}{x}−\mathrm{9}}{{x}−\mathrm{2}} \\ $$

Commented by pete last updated on 08/Sep/21

Thank you sir

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by amin96 last updated on 08/Sep/21

fog(x)=2−(1/x)    f(x)=((ax+b)/(cx+d))  fog(x)=((5ax+2a+b)/(5cx+2c+d))=((2x−1)/x)  ⇒   { ((a=(2/5))),((2a+b=−1)),((c=(1/5))),((2c+d=0)) :}  b=(9/5)     d=((−2)/5)  a=(2/5)  c=(1/5)  f(x)=(((2/5)x−(9/5))/((x/5)−(2/5)))=(((2x−9)/5)/((x/5)−(2/5)))=((2x−9)/(x−2))

$${fog}\left({x}\right)=\mathrm{2}−\frac{\mathrm{1}}{{x}}\:\:\:\:{f}\left({x}\right)=\frac{{ax}+{b}}{{cx}+{d}} \\ $$$${fog}\left({x}\right)=\frac{\mathrm{5}{ax}+\mathrm{2}{a}+{b}}{\mathrm{5}{cx}+\mathrm{2}{c}+{d}}=\frac{\mathrm{2}{x}−\mathrm{1}}{{x}}\:\:\Rightarrow\:\:\begin{cases}{{a}=\frac{\mathrm{2}}{\mathrm{5}}}\\{\mathrm{2}{a}+{b}=−\mathrm{1}}\\{{c}=\frac{\mathrm{1}}{\mathrm{5}}}\\{\mathrm{2}{c}+{d}=\mathrm{0}}\end{cases} \\ $$$${b}=\frac{\mathrm{9}}{\mathrm{5}}\:\:\:\:\:{d}=\frac{−\mathrm{2}}{\mathrm{5}}\:\:{a}=\frac{\mathrm{2}}{\mathrm{5}}\:\:{c}=\frac{\mathrm{1}}{\mathrm{5}} \\ $$$${f}\left({x}\right)=\frac{\frac{\mathrm{2}}{\mathrm{5}}{x}−\frac{\mathrm{9}}{\mathrm{5}}}{\frac{{x}}{\mathrm{5}}−\frac{\mathrm{2}}{\mathrm{5}}}=\frac{\frac{\mathrm{2}{x}−\mathrm{9}}{\mathrm{5}}}{\frac{{x}}{\mathrm{5}}−\frac{\mathrm{2}}{\mathrm{5}}}=\frac{\mathrm{2}{x}−\mathrm{9}}{{x}−\mathrm{2}} \\ $$

Answered by amin96 last updated on 08/Sep/21

g(x)=5x+2   ⇒  g^(−1) (x)=((x−2)/5)  fof(x)=((2x−1)/x)  ⇒  fogog^(−1) (x)=f(x)  f(x)=((2(((x−2))/5)−1)/((x−2)/5))=((2x−4−5)/(x−2))=((2x−9)/(x−2))

$${g}\left({x}\right)=\mathrm{5}{x}+\mathrm{2}\:\:\:\Rightarrow\:\:{g}^{−\mathrm{1}} \left({x}\right)=\frac{{x}−\mathrm{2}}{\mathrm{5}} \\ $$$${fof}\left({x}\right)=\frac{\mathrm{2}{x}−\mathrm{1}}{{x}}\:\:\Rightarrow\:\:{fogog}^{−\mathrm{1}} \left({x}\right)={f}\left({x}\right) \\ $$$${f}\left({x}\right)=\frac{\mathrm{2}\frac{\left({x}−\mathrm{2}\right)}{\mathrm{5}}−\mathrm{1}}{\frac{{x}−\mathrm{2}}{\mathrm{5}}}=\frac{\mathrm{2}{x}−\mathrm{4}−\mathrm{5}}{{x}−\mathrm{2}}=\frac{\mathrm{2}{x}−\mathrm{9}}{{x}−\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com