Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 153555 by mnjuly1970 last updated on 08/Sep/21

       Ω := ∫_0 ^( (π/2)) cos(2x).ln(sin(x))dx=^?  −(π/4)            solution (1 )       Ω := ∫_0 ^( (π/2)) ( 2cos^( 2) (x)−1)ln(sin(x))dx        := 2∫_0 ^( (π/2)) cos^( 2) (x).ln(sin(x))dx−∫_0 ^( (π/2)) ln(sin(x))dx       we know that : ∫_0 ^(π/2) ln(sin(x))dx=_(earlier) ^(derived)  ((−π)/2) ln(2)               ∫_0 ^( (π/2)) cos^( 2) (x).ln(sin(x))dx=_(posts) ^(previous)  −(π/4)ln(2)−(π/8)        ∴   Ω := −(π/2) ln(2) −(π/4) +(π/2) ln(2)                       ◂    Ω =− (π/4)  ▶      m.n

$$ \\ $$$$\:\:\:\:\:\Omega\::=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {cos}\left(\mathrm{2}{x}\right).{ln}\left({sin}\left({x}\right)\right){dx}\overset{?} {=}\:−\frac{\pi}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:{solution}\:\left(\mathrm{1}\:\right) \\ $$$$\:\:\:\:\:\Omega\::=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \left(\:\mathrm{2}{cos}^{\:\mathrm{2}} \left({x}\right)−\mathrm{1}\right){ln}\left({sin}\left({x}\right)\right){dx} \\ $$$$\:\:\:\:\:\::=\:\mathrm{2}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {cos}^{\:\mathrm{2}} \left({x}\right).{ln}\left({sin}\left({x}\right)\right){dx}−\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({x}\right)\right){dx} \\ $$$$\:\:\:\:\:{we}\:{know}\:{that}\::\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({x}\right)\right){dx}\underset{{earlier}} {\overset{{derived}} {=}}\:\frac{−\pi}{\mathrm{2}}\:{ln}\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {cos}^{\:\mathrm{2}} \left({x}\right).{ln}\left({sin}\left({x}\right)\right){dx}\underset{{posts}} {\overset{{previous}} {=}}\:−\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right)−\frac{\pi}{\mathrm{8}} \\ $$$$\:\:\:\:\:\:\therefore\:\:\:\Omega\::=\:−\frac{\pi}{\mathrm{2}}\:{ln}\left(\mathrm{2}\right)\:−\frac{\pi}{\mathrm{4}}\:+\frac{\pi}{\mathrm{2}}\:{ln}\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\blacktriangleleft\:\:\:\:\Omega\:=−\:\frac{\pi}{\mathrm{4}}\:\:\blacktriangleright\:\:\:\:\:\:{m}.{n} \\ $$

Answered by Ar Brandon last updated on 08/Sep/21

Ω=∫_0 ^(π/2) cos(2x)ln(sinx)dx   { ((u(x)=ln(sinx))),((v′(x)=cos(2x))) :}⇒ { ((u′(x)=((cosx)/(sinx)))),((v(x)=((sin2x)/2))) :}  Ω=[((ln(sinx)sin2x)/2)−∫cos^2 xdx]_0 ^(π/2)       =−∫_0 ^(π/2) cos^2 xdx=−(1/2)∫_0 ^(π/2) (1+cos2x)dx      =−(1/2)[x+((sin2x)/2)]_0 ^(π/2) =−(π/4)

$$\Omega=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}\left(\mathrm{2}{x}\right)\mathrm{ln}\left(\mathrm{sin}{x}\right){dx} \\ $$$$\begin{cases}{{u}\left({x}\right)=\mathrm{ln}\left(\mathrm{sin}{x}\right)}\\{{v}'\left({x}\right)=\mathrm{cos}\left(\mathrm{2}{x}\right)}\end{cases}\Rightarrow\begin{cases}{{u}'\left({x}\right)=\frac{\mathrm{cos}{x}}{\mathrm{sin}{x}}}\\{{v}\left({x}\right)=\frac{\mathrm{sin2}{x}}{\mathrm{2}}}\end{cases} \\ $$$$\Omega=\left[\frac{\mathrm{ln}\left(\mathrm{sin}{x}\right)\mathrm{sin2}{x}}{\mathrm{2}}−\int\mathrm{cos}^{\mathrm{2}} {xdx}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$\:\:\:\:=−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}^{\mathrm{2}} {xdx}=−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}+\mathrm{cos2}{x}\right){dx} \\ $$$$\:\:\:\:=−\frac{\mathrm{1}}{\mathrm{2}}\left[{x}+\frac{\mathrm{sin2}{x}}{\mathrm{2}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =−\frac{\pi}{\mathrm{4}} \\ $$

Commented by mnjuly1970 last updated on 08/Sep/21

 very nice sir brando as always..

$$\:{very}\:{nice}\:{sir}\:{brando}\:{as}\:{always}.. \\ $$

Commented by Ar Brandon last updated on 08/Sep/21

Thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com