Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 153384 by SANOGO last updated on 06/Sep/21

Answered by mindispower last updated on 06/Sep/21

lim_(n→∞) ∣(U_(n+1) /U_n )∣=0  ⇒ε=(1/2),∃N∈N ∀n≥N  ∣(U_(n+1) /U_n )∣≤(1/2)  ⇒Π_(k=N) ^(N+m) ∣(U_(k+1) /U_k )∣≤Π_(k=N) ^(m+N) ((1/2))  ⇒∣U_(N+m+1) ∣≤U_N ((1/2))^(m+1)   lim_(m→∞) ∣U_(N+m+1) ∣≤U_N lim_(m→∞) ((1/2))^(m+1) =0

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\mid\frac{{U}_{{n}+\mathrm{1}} }{{U}_{{n}} }\mid=\mathrm{0} \\ $$$$\Rightarrow\epsilon=\frac{\mathrm{1}}{\mathrm{2}},\exists{N}\in\mathbb{N}\:\forall{n}\geqslant{N}\:\:\mid\frac{{U}_{{n}+\mathrm{1}} }{{U}_{{n}} }\mid\leqslant\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\underset{{k}={N}} {\overset{{N}+{m}} {\prod}}\mid\frac{{U}_{{k}+\mathrm{1}} }{{U}_{{k}} }\mid\leqslant\underset{{k}={N}} {\overset{{m}+{N}} {\prod}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\mid{U}_{{N}+{m}+\mathrm{1}} \mid\leqslant{U}_{{N}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{m}+\mathrm{1}} \\ $$$$\underset{{m}\rightarrow\infty} {\mathrm{lim}}\mid{U}_{{N}+{m}+\mathrm{1}} \mid\leqslant{U}_{{N}} \underset{{m}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{m}+\mathrm{1}} =\mathrm{0} \\ $$$$ \\ $$

Commented by SANOGO last updated on 07/Sep/21

merci beaucoup chef

$${merci}\:{beaucoup}\:{chef} \\ $$

Answered by Jonathanwaweh last updated on 07/Sep/21

par l′absurde supposons l_(n→∞) im∣(u_(n+1) /u_n )∣=0    et   lim(u_n )=l;(l≠0)  alors  puisque  (u_(n+1) )  est une sous−suite (u_(n)) )  ona limu_(n+1) =l  il vient lim((u_(n+1) /u_n ))=((limu_(n+1) )/(limu_(n ) ))                                      =(l/l)                                     =1(absurde  car  lim∣(U_(n+1) /U_n )∣=0⇒lim((u_(n+1) /u_n ))=0)  d′ou ....

$${par}\:{l}'{absurde}\:{supposons}\:\underset{{n}\rightarrow\infty} {{l}im}\mid\frac{{u}_{{n}+\mathrm{1}} }{{u}_{{n}} }\mid=\mathrm{0}\:\:\:\:{et}\:\:\:{lim}\left({u}_{{n}} \right)={l};\left({l}\neq\mathrm{0}\right) \\ $$$${alors}\:\:{puisque}\:\:\left({u}_{{n}+\mathrm{1}} \right)\:\:{est}\:{une}\:{sous}−{suite}\:\left({u}_{\left.{n}\right)} \right)\:\:{ona}\:{limu}_{{n}+\mathrm{1}} ={l} \\ $$$${il}\:{vient}\:{lim}\left(\frac{{u}_{{n}+\mathrm{1}} }{{u}_{{n}} }\right)=\frac{{limu}_{{n}+\mathrm{1}} }{{limu}_{{n}\:} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{l}}{{l}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1}\left({absurde}\:\:{car}\:\:{lim}\mid\frac{{U}_{{n}+\mathrm{1}} }{{U}_{{n}} }\mid=\mathrm{0}\Rightarrow{lim}\left(\frac{{u}_{{n}+\mathrm{1}} }{{u}_{{n}} }\right)=\mathrm{0}\right) \\ $$$${d}'{ou}\:.... \\ $$

Commented by SANOGO last updated on 07/Sep/21

merci bien

$${merci}\:{bien} \\ $$

Commented by mindispower last updated on 23/Sep/21

je vous  en Prie

$${je}\:{vous}\:\:{en}\:{Prie} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com