Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 153103 by amin96 last updated on 04/Sep/21

(1/(2∙3))+(1/(4∙5∙6))+(1/(7∙8∙9))+…

$$\frac{\mathrm{1}}{\mathrm{2}\centerdot\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}\centerdot\mathrm{5}\centerdot\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{7}\centerdot\mathrm{8}\centerdot\mathrm{9}}+\ldots \\ $$

Answered by puissant last updated on 04/Sep/21

S=Σ_(n=0) ^∞ (1/((3n+1)(3n+2)(3n+3)))  =Σ_(n=0) ^∞ ((1/((3n+1)(3n+2)))−(1/((3n+1)(3n+3))))  =(1/9)Σ_(n=0) ^∞ ((1/((n+(1/3))(n+(2/3))))−(1/((n+(1/3))(n+1))))  =(1/9)Σ_(n=0) ^∞ (((ψ((2/3))−ψ((1/3)))/((2/3)−(1/3)))−((ψ(1)−ψ((1/3)))/(1−(1/3))))  =(1/9)(((π/( (√3)))/(1/3))−((−γ+(π/(2(√3)))+(3/2)ln3+γ)/(2/3)))  =(1/9)(π(√3)−((π(√3))/4)−(9/4)ln3)    ∴∵   S=(π/(4(√3)))−(1/4)ln3.

$${S}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{2}\right)\left(\mathrm{3}{n}+\mathrm{3}\right)} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{2}\right)}−\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{3}\right)}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{9}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\left({n}+\frac{\mathrm{1}}{\mathrm{3}}\right)\left({n}+\frac{\mathrm{2}}{\mathrm{3}}\right)}−\frac{\mathrm{1}}{\left({n}+\frac{\mathrm{1}}{\mathrm{3}}\right)\left({n}+\mathrm{1}\right)}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{9}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\psi\left(\frac{\mathrm{2}}{\mathrm{3}}\right)−\psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)}{\frac{\mathrm{2}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}}−\frac{\psi\left(\mathrm{1}\right)−\psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{9}}\left(\frac{\frac{\pi}{\:\sqrt{\mathrm{3}}}}{\frac{\mathrm{1}}{\mathrm{3}}}−\frac{−\gamma+\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}+\frac{\mathrm{3}}{\mathrm{2}}{ln}\mathrm{3}+\gamma}{\frac{\mathrm{2}}{\mathrm{3}}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{9}}\left(\pi\sqrt{\mathrm{3}}−\frac{\pi\sqrt{\mathrm{3}}}{\mathrm{4}}−\frac{\mathrm{9}}{\mathrm{4}}{ln}\mathrm{3}\right) \\ $$$$ \\ $$$$\therefore\because\:\:\:{S}=\frac{\pi}{\mathrm{4}\sqrt{\mathrm{3}}}−\frac{\mathrm{1}}{\mathrm{4}}{ln}\mathrm{3}. \\ $$

Commented by amin96 last updated on 04/Sep/21

Thanks sir

$${Thanks}\:{sir} \\ $$

Commented by Tawa11 last updated on 05/Sep/21

weldone sir

$$\mathrm{weldone}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com