Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 152985 by ajfour last updated on 03/Sep/21

Commented by mr W last updated on 03/Sep/21

area in first quadrant   + area in second quadrant   =(1/2) of rectangle = constant  i.e. when area in first quadrant is  maximum, the area in second   quadrant is minimum, and vice versa.  A_(min) =(1/2)×a×(a/2)=(a^2 /4)  A_(max) =((ab)/2)−(a^2 /4)  ⇒(A_(max) /A_(min) )=((2b)/a)−1  (assume a≤b)

$${area}\:{in}\:{first}\:{quadrant}\: \\ $$$$+\:{area}\:{in}\:{second}\:{quadrant}\: \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:{of}\:{rectangle}\:=\:{constant} \\ $$$${i}.{e}.\:{when}\:{area}\:{in}\:{first}\:{quadrant}\:{is} \\ $$$${maximum},\:{the}\:{area}\:{in}\:{second}\: \\ $$$${quadrant}\:{is}\:{minimum},\:{and}\:{vice}\:{versa}. \\ $$$${A}_{{min}} =\frac{\mathrm{1}}{\mathrm{2}}×{a}×\frac{{a}}{\mathrm{2}}=\frac{{a}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${A}_{{max}} =\frac{{ab}}{\mathrm{2}}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\Rightarrow\frac{{A}_{{max}} }{{A}_{{min}} }=\frac{\mathrm{2}{b}}{{a}}−\mathrm{1} \\ $$$$\left({assume}\:{a}\leqslant{b}\right) \\ $$

Commented by ajfour last updated on 03/Sep/21

thanks sir; love the way you  present it!

$${thanks}\:{sir};\:{love}\:{the}\:{way}\:{you} \\ $$$${present}\:{it}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com