Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 152939 by mnjuly1970 last updated on 03/Sep/21

       Q :  If    a  ,  b    are positive numbers  and                  { ((  a = 1 + (( 6a −2))^(1/3)   )),((   b = 1 + (( 6b −2))^(1/3) )) :}           then find the value of ,    a.b =?      ... Compiled by m.n : (E lementary olympiad ).      ■

$$ \\ $$$$\:\:\:\:\:\mathrm{Q}\::\:\:\mathrm{If}\:\:\:\:{a}\:\:,\:\:{b}\:\:\:\:\mathrm{are}\:\mathrm{positive}\:\mathrm{numbers}\:\:\mathrm{and} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\begin{cases}{\:\:{a}\:=\:\mathrm{1}\:+\:\sqrt[{\mathrm{3}}]{\:\mathrm{6}{a}\:−\mathrm{2}}\:\:}\\{\:\:\:{b}\:=\:\mathrm{1}\:+\:\sqrt[{\mathrm{3}}]{\:\mathrm{6}{b}\:−\mathrm{2}}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:,\:\:\:\:{a}.{b}\:=? \\ $$$$\:\:\:\:...\:\mathrm{Compiled}\:\mathrm{by}\:\mathrm{m}.\mathrm{n}\::\:\left(\mathscr{E}\:{lementary}\:{olympiad}\:\right).\:\:\:\:\:\:\blacksquare \\ $$$$ \\ $$

Answered by mr W last updated on 03/Sep/21

a,b are roots of  x=1+((6x−2))^(1/3)   (x−1)^3 =6x−2  x^3 −3x^2 −3x+1=0  (x+1)(x^2 −4x+1)=0  positive roots a,b are roots of x^2 −4x+1=0  ⇒a+b=4, ab=1

$${a},{b}\:{are}\:{roots}\:{of} \\ $$$${x}=\mathrm{1}+\sqrt[{\mathrm{3}}]{\mathrm{6}{x}−\mathrm{2}} \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{3}} =\mathrm{6}{x}−\mathrm{2} \\ $$$${x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{1}=\mathrm{0} \\ $$$$\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$${positive}\:{roots}\:{a},{b}\:{are}\:{roots}\:{of}\:{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{a}+{b}=\mathrm{4},\:{ab}=\mathrm{1} \\ $$

Commented by mnjuly1970 last updated on 03/Sep/21

 bravo sir W .grateful..

$$\:{bravo}\:{sir}\:{W}\:.{grateful}.. \\ $$

Commented by mr W last updated on 03/Sep/21

thanks for the nice questions sir!

$${thanks}\:{for}\:{the}\:{nice}\:{questions}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com