Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 152898 by bobhans last updated on 02/Sep/21

Commented by mathdanisur last updated on 03/Sep/21

5x^5 −23x^4 +39x^3 −33x^2 +24x=4 ⇒ =2

$$\mathrm{5x}^{\mathrm{5}} −\mathrm{23x}^{\mathrm{4}} +\mathrm{39x}^{\mathrm{3}} −\mathrm{33x}^{\mathrm{2}} +\mathrm{24x}=\mathrm{4}\:\Rightarrow\:=\mathrm{2} \\ $$

Commented by MJS_new last updated on 03/Sep/21

solution please

$$\mathrm{solution}\:\mathrm{please} \\ $$

Answered by mindispower last updated on 03/Sep/21

((√(1−x^2 ))+2+((1+x)/2)+(√((1+x)/(1−x))))=((x^2 +1)/x)  ((√(1−x^2 ))+(√((1+x)/(1−x))))=((2(x^2 +1)−5x−x^2 )/(2x))  (1−x^2 +((1+x)/(1−x))+2(1+x))=(((x^2 −5x+2)/(2x)))^2   ⇒4x^2 ((1−x^2 )(1−x)+(1+x)+2(1−x^2 ))  =(1−x)(x^4 +25x^2 −10x+4−20x+4x^2 )  =4x^2 (x^3 −3x^2 +4)=(1−x)(x^4 +29x^2 −30x+4)  5x^5 −13x^4 +29x^3 −43x^2 +34x−4=0...

$$\left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }+\mathrm{2}+\frac{\mathrm{1}+{x}}{\mathrm{2}}+\sqrt{\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}}\right)=\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}} \\ $$$$\left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }+\sqrt{\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}}\right)=\frac{\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{1}\right)−\mathrm{5}{x}−{x}^{\mathrm{2}} }{\mathrm{2}{x}} \\ $$$$\left(\mathrm{1}−{x}^{\mathrm{2}} +\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}+\mathrm{2}\left(\mathrm{1}+{x}\right)\right)=\left(\frac{{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{2}}{\mathrm{2}{x}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4}{x}^{\mathrm{2}} \left(\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}−{x}\right)+\left(\mathrm{1}+{x}\right)+\mathrm{2}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\right) \\ $$$$=\left(\mathrm{1}−{x}\right)\left({x}^{\mathrm{4}} +\mathrm{25}{x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{4}−\mathrm{20}{x}+\mathrm{4}{x}^{\mathrm{2}} \right) \\ $$$$=\mathrm{4}{x}^{\mathrm{2}} \left({x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}\right)=\left(\mathrm{1}−{x}\right)\left({x}^{\mathrm{4}} +\mathrm{29}{x}^{\mathrm{2}} −\mathrm{30}{x}+\mathrm{4}\right) \\ $$$$\mathrm{5}{x}^{\mathrm{5}} −\mathrm{13}{x}^{\mathrm{4}} +\mathrm{29}{x}^{\mathrm{3}} −\mathrm{43}{x}^{\mathrm{2}} +\mathrm{34}{x}−\mathrm{4}=\mathrm{0}... \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by mathdanisur last updated on 03/Sep/21

(((x^2 -5x+2)/(2x^2 -4x)))^2 = ((1+x)/(1-x))  (1-x)(x^2 -5x+2)^2 =(1+x)(2x^2 -4x)^2   S=5x^5 -23x^4 +39x^3 -33x^2 +24x=4  S=(√4) ⇒ S=2

$$\left(\frac{\mathrm{x}^{\mathrm{2}} -\mathrm{5x}+\mathrm{2}}{\mathrm{2x}^{\mathrm{2}} -\mathrm{4x}}\right)^{\mathrm{2}} =\:\frac{\mathrm{1}+\mathrm{x}}{\mathrm{1}-\mathrm{x}} \\ $$$$\left(\mathrm{1}-\mathrm{x}\right)\left(\mathrm{x}^{\mathrm{2}} -\mathrm{5x}+\mathrm{2}\right)^{\mathrm{2}} =\left(\mathrm{1}+\mathrm{x}\right)\left(\mathrm{2x}^{\mathrm{2}} -\mathrm{4x}\right)^{\mathrm{2}} \\ $$$$\mathrm{S}=\mathrm{5x}^{\mathrm{5}} -\mathrm{23x}^{\mathrm{4}} +\mathrm{39x}^{\mathrm{3}} -\mathrm{33x}^{\mathrm{2}} +\mathrm{24x}=\mathrm{4} \\ $$$$\mathrm{S}=\sqrt{\mathrm{4}}\:\Rightarrow\:\mathrm{S}=\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com