Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 152840 by liberty last updated on 02/Sep/21

Answered by MJS_new last updated on 04/Sep/21

transforming ⇒  x^3 −3x^2 +(y^2 +3)x−y(3y+1)=0  x^2 −(1/y)x+y^2 −3=0  y=px and transforming ⇒  x(x^2 −3x−((p−3)/(p^2 +1)))=0 [x=0 ⇒ y=0 not possible]  x^2 −((3p+1)/(p(p^2 +1)))=0  ⇒  x^2 −3x−((p−3)/(p^2 +1))=0  x^2 −((3p+1)/(p(p^2 +1)))=0  substracting and solving for x ⇒  x=−((p^2 −6p−1)/(3p(p^2 +1)))  inserting and transforming ⇒  p^6 −((135)/(26))p^5 −((159)/(26))p^4 +(9/(13))p^3 +((12)/(13))p^2 +(9/(26))p+(1/(26))=0  (p−(1/2))(p+1)(p^2 −6p−1)(p^2 +(4/(13))p+(1/(13)))=0  ⇒  p=−1 ⇒ x=1∧y=−1 ★  p=3−(√(10)) ⇒ x=y=0 impossible  p=(1/2) ⇒ x=2∧y=1 ★  p=3+(√(10)) ⇒ x=y=0 impossible  p=−(2/(13))+(3/(13))i ⇒ x=(3/2)−i∧y=(1/2)i ★  p=−(2/(13))−(3/(13i)) ⇒ x=(3/2)+i∧y=−(1/2)i ★

$$\mathrm{transforming}\:\Rightarrow \\ $$$${x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\left({y}^{\mathrm{2}} +\mathrm{3}\right){x}−{y}\left(\mathrm{3}{y}+\mathrm{1}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\frac{\mathrm{1}}{{y}}{x}+{y}^{\mathrm{2}} −\mathrm{3}=\mathrm{0} \\ $$$${y}={px}\:\mathrm{and}\:\mathrm{transforming}\:\Rightarrow \\ $$$${x}\left({x}^{\mathrm{2}} −\mathrm{3}{x}−\frac{{p}−\mathrm{3}}{{p}^{\mathrm{2}} +\mathrm{1}}\right)=\mathrm{0}\:\left[{x}=\mathrm{0}\:\Rightarrow\:{y}=\mathrm{0}\:\mathrm{not}\:\mathrm{possible}\right] \\ $$$${x}^{\mathrm{2}} −\frac{\mathrm{3}{p}+\mathrm{1}}{{p}\left({p}^{\mathrm{2}} +\mathrm{1}\right)}=\mathrm{0} \\ $$$$\Rightarrow \\ $$$${x}^{\mathrm{2}} −\mathrm{3}{x}−\frac{{p}−\mathrm{3}}{{p}^{\mathrm{2}} +\mathrm{1}}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\frac{\mathrm{3}{p}+\mathrm{1}}{{p}\left({p}^{\mathrm{2}} +\mathrm{1}\right)}=\mathrm{0} \\ $$$$\mathrm{substracting}\:\mathrm{and}\:\mathrm{solving}\:\mathrm{for}\:{x}\:\Rightarrow \\ $$$${x}=−\frac{{p}^{\mathrm{2}} −\mathrm{6}{p}−\mathrm{1}}{\mathrm{3}{p}\left({p}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$$\mathrm{inserting}\:\mathrm{and}\:\mathrm{transforming}\:\Rightarrow \\ $$$${p}^{\mathrm{6}} −\frac{\mathrm{135}}{\mathrm{26}}{p}^{\mathrm{5}} −\frac{\mathrm{159}}{\mathrm{26}}{p}^{\mathrm{4}} +\frac{\mathrm{9}}{\mathrm{13}}{p}^{\mathrm{3}} +\frac{\mathrm{12}}{\mathrm{13}}{p}^{\mathrm{2}} +\frac{\mathrm{9}}{\mathrm{26}}{p}+\frac{\mathrm{1}}{\mathrm{26}}=\mathrm{0} \\ $$$$\left({p}−\frac{\mathrm{1}}{\mathrm{2}}\right)\left({p}+\mathrm{1}\right)\left({p}^{\mathrm{2}} −\mathrm{6}{p}−\mathrm{1}\right)\left({p}^{\mathrm{2}} +\frac{\mathrm{4}}{\mathrm{13}}{p}+\frac{\mathrm{1}}{\mathrm{13}}\right)=\mathrm{0} \\ $$$$\Rightarrow \\ $$$${p}=−\mathrm{1}\:\Rightarrow\:{x}=\mathrm{1}\wedge{y}=−\mathrm{1}\:\bigstar \\ $$$${p}=\mathrm{3}−\sqrt{\mathrm{10}}\:\Rightarrow\:{x}={y}=\mathrm{0}\:\mathrm{impossible} \\ $$$${p}=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\:{x}=\mathrm{2}\wedge{y}=\mathrm{1}\:\bigstar \\ $$$${p}=\mathrm{3}+\sqrt{\mathrm{10}}\:\Rightarrow\:{x}={y}=\mathrm{0}\:\mathrm{impossible} \\ $$$${p}=−\frac{\mathrm{2}}{\mathrm{13}}+\frac{\mathrm{3}}{\mathrm{13}}\mathrm{i}\:\Rightarrow\:{x}=\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{i}\wedge{y}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{i}\:\bigstar \\ $$$${p}=−\frac{\mathrm{2}}{\mathrm{13}}−\frac{\mathrm{3}}{\mathrm{13i}}\:\Rightarrow\:{x}=\frac{\mathrm{3}}{\mathrm{2}}+\mathrm{i}\wedge{y}=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{i}\:\bigstar \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com