Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 152795 by mnjuly1970 last updated on 01/Sep/21

  𝛗=∫_0 ^( ∞) ((sin(x ))/x)(((a^( 2) +cos^( 2) (x))/(b^( 2) + cos^( 2) (x ))))dx=?

$$ \\ $$$$\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}\:\right)}{{x}}\left(\frac{{a}^{\:\mathrm{2}} +{cos}^{\:\mathrm{2}} \left({x}\right)}{{b}^{\:\mathrm{2}} +\:{cos}^{\:\mathrm{2}} \left({x}\:\right)}\right){dx}=? \\ $$$$ \\ $$

Answered by Olaf_Thorendsen last updated on 01/Sep/21

Ο† = ∫_0 ^∞ ((sinx)/x)(((a^2 +cos^2 x)/(b^2 +cos^2 x))) dx  Let f(x) = ((a^2 +cos^2 x)/(b^2 +cos^2 x))  f is a Ο€βˆ’periodic function. We can  apply the Lobatchevskyβˆ’Dirichlet  integral formula :  Ο† = ∫_0 ^∞ ((sinx)/x)f(x) dx = ∫_0 ^(Ο€/2) f(x) dx  Ο† = ∫_0 ^(Ο€/2) ((a^2 +cos^2 x)/(b^2 +cos^2 x)) dx  Ο† = ∫_0 ^(Ο€/2) (1+((a^2 βˆ’b^2 )/(b^2 +cos^2 x))) dx  Let t = tan(x/2) :  Ο† = ∫_0 ^1 (1+((a^2 βˆ’b^2 )/(b^2 +((1βˆ’t^2 )/(1+t^2 ))))) ((2dt)/(1+t^2 ))  Ο† = 2∫_0 ^1 (1+((a^2 βˆ’b^2 )/(b^2 +1+(b^2 βˆ’1)t^2 ))) dt  Let u = (√(∣b^2 βˆ’1∣)).t (case bβ‰ 1) :  Ο† = (2/( (√(∣b^2 βˆ’1∣))))∫_0 ^(√(∣b^2 βˆ’1∣)) (1+((a^2 βˆ’b^2 )/(b^2 +1+u^2 ))) du  Ο† = (2/( (√(∣b^2 βˆ’1∣))))[u+(a^2 βˆ’b^2 )(1/( (√(b^2 +1))))arctan((u/( (√(b^2 +1)))))]_0 ^(√(∣b^2 βˆ’1∣))   Ο† = 2+2((a^2 βˆ’b^2 )/( (√(∣b^4 βˆ’1∣))))arctan((√(∣((b^2 βˆ’1)/(b^2 +1))∣)))  do verify my calculous sir

$$\phi\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}{x}}{{x}}\left(\frac{{a}^{\mathrm{2}} +\mathrm{cos}^{\mathrm{2}} {x}}{{b}^{\mathrm{2}} +\mathrm{cos}^{\mathrm{2}} {x}}\right)\:{dx} \\ $$$$\mathrm{Let}\:{f}\left({x}\right)\:=\:\frac{{a}^{\mathrm{2}} +\mathrm{cos}^{\mathrm{2}} {x}}{{b}^{\mathrm{2}} +\mathrm{cos}^{\mathrm{2}} {x}} \\ $$$${f}\:\mathrm{is}\:\mathrm{a}\:\piβˆ’\mathrm{periodic}\:\mathrm{function}.\:\mathrm{We}\:\mathrm{can} \\ $$$$\mathrm{apply}\:\mathrm{the}\:\mathrm{Lobatchevsky}βˆ’\mathrm{Dirichlet} \\ $$$$\mathrm{integral}\:\mathrm{formula}\:: \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}{x}}{{x}}{f}\left({x}\right)\:{dx}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {f}\left({x}\right)\:{dx} \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{a}^{\mathrm{2}} +\mathrm{cos}^{\mathrm{2}} {x}}{{b}^{\mathrm{2}} +\mathrm{cos}^{\mathrm{2}} {x}}\:{dx} \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}+\frac{{a}^{\mathrm{2}} βˆ’{b}^{\mathrm{2}} }{{b}^{\mathrm{2}} +\mathrm{cos}^{\mathrm{2}} {x}}\right)\:{dx} \\ $$$$\mathrm{Let}\:{t}\:=\:\mathrm{tan}\frac{{x}}{\mathrm{2}}\:: \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+\frac{{a}^{\mathrm{2}} βˆ’{b}^{\mathrm{2}} }{{b}^{\mathrm{2}} +\frac{\mathrm{1}βˆ’{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\right)\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\phi\:=\:\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+\frac{{a}^{\mathrm{2}} βˆ’{b}^{\mathrm{2}} }{{b}^{\mathrm{2}} +\mathrm{1}+\left({b}^{\mathrm{2}} βˆ’\mathrm{1}\right){t}^{\mathrm{2}} }\right)\:{dt} \\ $$$$\mathrm{Let}\:{u}\:=\:\sqrt{\mid{b}^{\mathrm{2}} βˆ’\mathrm{1}\mid}.{t}\:\left(\mathrm{case}\:{b}\neq\mathrm{1}\right)\:: \\ $$$$\phi\:=\:\frac{\mathrm{2}}{\:\sqrt{\mid{b}^{\mathrm{2}} βˆ’\mathrm{1}\mid}}\int_{\mathrm{0}} ^{\sqrt{\mid{b}^{\mathrm{2}} βˆ’\mathrm{1}\mid}} \left(\mathrm{1}+\frac{{a}^{\mathrm{2}} βˆ’{b}^{\mathrm{2}} }{{b}^{\mathrm{2}} +\mathrm{1}+{u}^{\mathrm{2}} }\right)\:{du} \\ $$$$\phi\:=\:\frac{\mathrm{2}}{\:\sqrt{\mid{b}^{\mathrm{2}} βˆ’\mathrm{1}\mid}}\left[{u}+\left({a}^{\mathrm{2}} βˆ’{b}^{\mathrm{2}} \right)\frac{\mathrm{1}}{\:\sqrt{{b}^{\mathrm{2}} +\mathrm{1}}}\mathrm{arctan}\left(\frac{{u}}{\:\sqrt{{b}^{\mathrm{2}} +\mathrm{1}}}\right)\right]_{\mathrm{0}} ^{\sqrt{\mid{b}^{\mathrm{2}} βˆ’\mathrm{1}\mid}} \\ $$$$\phi\:=\:\mathrm{2}+\mathrm{2}\frac{{a}^{\mathrm{2}} βˆ’{b}^{\mathrm{2}} }{\:\sqrt{\mid{b}^{\mathrm{4}} βˆ’\mathrm{1}\mid}}\mathrm{arctan}\left(\sqrt{\mid\frac{{b}^{\mathrm{2}} βˆ’\mathrm{1}}{{b}^{\mathrm{2}} +\mathrm{1}}\mid}\right) \\ $$$$\boldsymbol{\mathrm{do}}\:\boldsymbol{\mathrm{verify}}\:\boldsymbol{\mathrm{my}}\:\boldsymbol{\mathrm{calculous}}\:\boldsymbol{\mathrm{sir}} \\ $$

Commented by SANOGO last updated on 01/Sep/21

belle demonstration

$${belle}\:{demonstration} \\ $$

Commented by mnjuly1970 last updated on 01/Sep/21

bravo sir olaf

$${bravo}\:{sir}\:{olaf} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com