Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 152770 by naka3546 last updated on 01/Sep/21

How  to  prove  that    a<b<c  ⇒  a+b > c  which  a,b,c  are  sides  of  a  triangle ?

$${How}\:\:{to}\:\:{prove}\:\:{that} \\ $$ $$\:\:{a}<{b}<{c}\:\:\Rightarrow\:\:{a}+{b}\:>\:{c} \\ $$ $${which}\:\:{a},{b},{c}\:\:{are}\:\:{sides}\:\:{of}\:\:{a}\:\:{triangle}\:? \\ $$

Commented byMJS_new last updated on 01/Sep/21

a+b>c∧a+c>b∧b+c>a ⇔ a, b, c are sides  of a triangle, no matter if a<b<c or not  we cannot prove a<b<c ⇒ a+b>c without  knowing a, b, c form a triangle  we do not need a<b<c to prove a+b>c when  we know a, b, c form a triangle

$${a}+{b}>{c}\wedge{a}+{c}>{b}\wedge{b}+{c}>{a}\:\Leftrightarrow\:{a},\:{b},\:{c}\:\mathrm{are}\:\mathrm{sides} \\ $$ $$\mathrm{of}\:\mathrm{a}\:\mathrm{triangle},\:\mathrm{no}\:\mathrm{matter}\:\mathrm{if}\:{a}<{b}<{c}\:\mathrm{or}\:\mathrm{not} \\ $$ $$\mathrm{we}\:\mathrm{cannot}\:\mathrm{prove}\:{a}<{b}<{c}\:\Rightarrow\:{a}+{b}>{c}\:\mathrm{without} \\ $$ $$\mathrm{knowing}\:{a},\:{b},\:{c}\:\mathrm{form}\:\mathrm{a}\:\mathrm{triangle} \\ $$ $$\mathrm{we}\:\mathrm{do}\:\mathrm{not}\:\mathrm{need}\:{a}<{b}<{c}\:\mathrm{to}\:\mathrm{prove}\:{a}+{b}>{c}\:\mathrm{when} \\ $$ $$\mathrm{we}\:\mathrm{know}\:{a},\:{b},\:{c}\:\mathrm{form}\:\mathrm{a}\:\mathrm{triangle} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com