Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 15263 by Tinkutara last updated on 08/Jun/17

The equation asinx + cos2x = 2a − 7  possesses a solution if  (1) a > 6  (2) 2 ≤ a ≤ 6  (3) a > 2  (4) a

$$\mathrm{The}\:\mathrm{equation}\:{a}\mathrm{sin}{x}\:+\:\mathrm{cos2}{x}\:=\:\mathrm{2}{a}\:−\:\mathrm{7} \\ $$ $$\mathrm{possesses}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{if} \\ $$ $$\left(\mathrm{1}\right)\:{a}\:>\:\mathrm{6} \\ $$ $$\left(\mathrm{2}\right)\:\mathrm{2}\:\leqslant\:{a}\:\leqslant\:\mathrm{6} \\ $$ $$\left(\mathrm{3}\right)\:{a}\:>\:\mathrm{2} \\ $$ $$\left(\mathrm{4}\right)\:{a} \\ $$

Answered by ajfour last updated on 08/Jun/17

asin x+1−2sin^2 x=2a−7  sin^2 x−(a/2)sin x=4−a  (sin x−(a/4))^2 =(a^2 /(16))−a+4  (sin x−(a/4))^2 =((a/4)−2)^2   ∣sin x−(a/4)∣=∣(a/4)−2∣  ⇒ (a/4)−2=±∣sin x−(a/4)∣  with the −ve sign, above eqn. ⇒  no value of a to fulfill the condition;  with the +ve sign it implies  (a/2)=2+sin x  or  a=4+2sin x  As  −1≤sin x≤1  we can conclude that          2≤ a ≤ 6   .

$${a}\mathrm{sin}\:{x}+\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} {x}=\mathrm{2}{a}−\mathrm{7} \\ $$ $$\mathrm{sin}\:^{\mathrm{2}} {x}−\frac{{a}}{\mathrm{2}}\mathrm{sin}\:{x}=\mathrm{4}−{a} \\ $$ $$\left(\mathrm{sin}\:{x}−\frac{{a}}{\mathrm{4}}\right)^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} }{\mathrm{16}}−{a}+\mathrm{4} \\ $$ $$\left(\mathrm{sin}\:{x}−\frac{{a}}{\mathrm{4}}\right)^{\mathrm{2}} =\left(\frac{{a}}{\mathrm{4}}−\mathrm{2}\right)^{\mathrm{2}} \\ $$ $$\mid\mathrm{sin}\:{x}−\frac{{a}}{\mathrm{4}}\mid=\mid\frac{{a}}{\mathrm{4}}−\mathrm{2}\mid \\ $$ $$\Rightarrow\:\frac{{a}}{\mathrm{4}}−\mathrm{2}=\pm\mid\mathrm{sin}\:{x}−\frac{{a}}{\mathrm{4}}\mid \\ $$ $${with}\:{the}\:−{ve}\:{sign},\:{above}\:{eqn}.\:\Rightarrow \\ $$ $${no}\:{value}\:{of}\:\boldsymbol{{a}}\:{to}\:{fulfill}\:{the}\:{condition}; \\ $$ $${with}\:{the}\:+{ve}\:{sign}\:{it}\:{implies} \\ $$ $$\frac{{a}}{\mathrm{2}}=\mathrm{2}+\mathrm{sin}\:{x} \\ $$ $${or}\:\:{a}=\mathrm{4}+\mathrm{2sin}\:{x} \\ $$ $${As}\:\:−\mathrm{1}\leqslant\mathrm{sin}\:{x}\leqslant\mathrm{1} \\ $$ $${we}\:{can}\:{conclude}\:{that} \\ $$ $$\:\:\:\:\:\:\:\:\mathrm{2}\leqslant\:\boldsymbol{{a}}\:\leqslant\:\mathrm{6}\:\:\:. \\ $$

Commented byTinkutara last updated on 09/Jun/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com