Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 152187 by Tawa11 last updated on 26/Aug/21

Please formular for     Γ((8/3))

$$\mathrm{Please}\:\mathrm{formular}\:\mathrm{for}\:\:\:\:\:\Gamma\left(\frac{\mathrm{8}}{\mathrm{3}}\right) \\ $$

Commented by Tawa11 last updated on 26/Aug/21

Or generally        Γ((x/y))

$$\mathrm{Or}\:\mathrm{generally}\:\:\:\:\:\:\:\:\Gamma\left(\frac{\mathrm{x}}{\mathrm{y}}\right) \\ $$

Answered by Olaf_Thorendsen last updated on 26/Aug/21

• Γ(z+1) = zΓ(z)  Γ((8/3)) =(5/3) Γ((5/3)) = (5/3).(2/3)Γ((2/3)) = ((10)/9)Γ((2/3))    • ∀z∈C\Z, Γ(1−z)Γ(z) = (π/(sin(πz)))  • Γ(1−(1/3))Γ((1/3)) = (π/(sin((π/3))))  Γ((2/3))Γ((1/3)) = ((2π)/( (√3)))  Γ((8/3)) = ((10)/9).(((2π)/( (√3)))/(Γ((1/3)))) = ((20π)/(9(√3))).(1/(Γ((1/3))))  We can prove that Γ((1/3)) = 3∫_0 ^∞ e^(−t^3 ) dt  Γ((1/3)) ≈ 2,678938537    General formula :  Γ(n+(1/p)) = Γ((1/p))(((pn−(p−1))!^((p)) )/p^n )  n!^((p))  denotes the pth multifactorial  of n.

$$\bullet\:\Gamma\left({z}+\mathrm{1}\right)\:=\:{z}\Gamma\left({z}\right) \\ $$$$\Gamma\left(\frac{\mathrm{8}}{\mathrm{3}}\right)\:=\frac{\mathrm{5}}{\mathrm{3}}\:\Gamma\left(\frac{\mathrm{5}}{\mathrm{3}}\right)\:=\:\frac{\mathrm{5}}{\mathrm{3}}.\frac{\mathrm{2}}{\mathrm{3}}\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\:=\:\frac{\mathrm{10}}{\mathrm{9}}\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right) \\ $$$$ \\ $$$$\bullet\:\forall{z}\in\mathbb{C}\backslash\mathbb{Z},\:\Gamma\left(\mathrm{1}−{z}\right)\Gamma\left({z}\right)\:=\:\frac{\pi}{\mathrm{sin}\left(\pi{z}\right)} \\ $$$$\bullet\:\Gamma\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:=\:\frac{\pi}{\mathrm{sin}\left(\frac{\pi}{\mathrm{3}}\right)} \\ $$$$\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:=\:\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{3}}} \\ $$$$\Gamma\left(\frac{\mathrm{8}}{\mathrm{3}}\right)\:=\:\frac{\mathrm{10}}{\mathrm{9}}.\frac{\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{3}}}}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)}\:=\:\frac{\mathrm{20}\pi}{\mathrm{9}\sqrt{\mathrm{3}}}.\frac{\mathrm{1}}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)} \\ $$$$\mathrm{We}\:\mathrm{can}\:\mathrm{prove}\:\mathrm{that}\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:=\:\mathrm{3}\int_{\mathrm{0}} ^{\infty} {e}^{−{t}^{\mathrm{3}} } {dt} \\ $$$$\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:\approx\:\mathrm{2},\mathrm{678938537} \\ $$$$ \\ $$$$\mathrm{General}\:\mathrm{formula}\:: \\ $$$$\Gamma\left({n}+\frac{\mathrm{1}}{{p}}\right)\:=\:\Gamma\left(\frac{\mathrm{1}}{{p}}\right)\frac{\left({pn}−\left({p}−\mathrm{1}\right)\right)!^{\left({p}\right)} }{{p}^{{n}} } \\ $$$${n}!^{\left({p}\right)} \:\mathrm{denotes}\:\mathrm{the}\:{p}\mathrm{th}\:\mathrm{multifactorial} \\ $$$$\mathrm{of}\:{n}. \\ $$

Commented by Tawa11 last updated on 26/Aug/21

Thanks sir. God bless you.

$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com