Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 150683 by Jonathanwaweh last updated on 14/Aug/21

Commented by Tawa11 last updated on 14/Aug/21

Great

$$\mathrm{Great} \\ $$

Answered by ajfour last updated on 14/Aug/21

4(AL)=R  ⇒ LO=((3R)/4)  (R−r)^2 =r^2 +(((3R)/4))^2   ⇒  r=((7R)/(32))  tan α=(r/((((3R)/4))))=(4/3)×(7/(32))=(7/(24))  T(((24R)/(25)), ((7R)/(25)))  tan β=((24R/25)/(R−((7R)/(25))))=(4/3)  x=β−(π/4) = tan^(−1) ((4/3))−(π/4)     ≈ 53°−45°=8°.

$$\mathrm{4}\left({AL}\right)={R}\:\:\Rightarrow\:{LO}=\frac{\mathrm{3}{R}}{\mathrm{4}} \\ $$$$\left({R}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} +\left(\frac{\mathrm{3}{R}}{\mathrm{4}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\:{r}=\frac{\mathrm{7}{R}}{\mathrm{32}} \\ $$$$\mathrm{tan}\:\alpha=\frac{{r}}{\left(\frac{\mathrm{3}{R}}{\mathrm{4}}\right)}=\frac{\mathrm{4}}{\mathrm{3}}×\frac{\mathrm{7}}{\mathrm{32}}=\frac{\mathrm{7}}{\mathrm{24}} \\ $$$${T}\left(\frac{\mathrm{24}{R}}{\mathrm{25}},\:\frac{\mathrm{7}{R}}{\mathrm{25}}\right) \\ $$$$\mathrm{tan}\:\beta=\frac{\mathrm{24}{R}/\mathrm{25}}{{R}−\frac{\mathrm{7}{R}}{\mathrm{25}}}=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${x}=\beta−\frac{\pi}{\mathrm{4}}\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{4}}{\mathrm{3}}\right)−\frac{\pi}{\mathrm{4}} \\ $$$$\:\:\:\approx\:\mathrm{53}°−\mathrm{45}°=\mathrm{8}°. \\ $$

Commented by mr W last updated on 14/Aug/21

or x=(α/2)=(1/2)tan^(−1) (7/(24))≈8°

$${or}\:{x}=\frac{\alpha}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{7}}{\mathrm{24}}\approx\mathrm{8}° \\ $$

Commented by mr W last updated on 14/Aug/21

Commented by ajfour last updated on 14/Aug/21

long route made short.thanks.

$${long}\:{route}\:{made}\:{short}.{thanks}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com