Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 150171 by puissant last updated on 10/Aug/21

solve in R:  (((ax−b)^3 ))^(1/7) −(((b−ax)^(−3) ))^(1/7) =((65)/8)

$${solve}\:{in}\:\mathbb{R}: \\ $$$$\sqrt[{\mathrm{7}}]{\left({ax}−{b}\right)^{\mathrm{3}} }−\sqrt[{\mathrm{7}}]{\left({b}−{ax}\right)^{−\mathrm{3}} }=\frac{\mathrm{65}}{\mathrm{8}} \\ $$

Answered by liberty last updated on 10/Aug/21

let (((ax−b)^3 ))^(1/7)  = u  ⇒ax−b=u^(7/3)  ⇒b−ax=−u^(7/3)   ⇒u+(1/u)=((65)/8)  ⇒8u^2 +8=65u  ⇒8u^2 −65u+8=0  ⇒(8u−1)(u−8)=0   { ((u=8⇒(ax−b)^(3/7) =2^3 ⇒ax−b=2^7 )),((u=(1/8)⇒(ax−b)^(3/7) =2^(−3) ⇒ax−b=2^(−7) )) :}

$$\mathrm{let}\:\sqrt[{\mathrm{7}}]{\left(\mathrm{ax}−\mathrm{b}\right)^{\mathrm{3}} }\:=\:\mathrm{u} \\ $$$$\Rightarrow\mathrm{ax}−\mathrm{b}=\mathrm{u}^{\mathrm{7}/\mathrm{3}} \:\Rightarrow\mathrm{b}−\mathrm{ax}=−\mathrm{u}^{\mathrm{7}/\mathrm{3}} \\ $$$$\Rightarrow\mathrm{u}+\frac{\mathrm{1}}{\mathrm{u}}=\frac{\mathrm{65}}{\mathrm{8}} \\ $$$$\Rightarrow\mathrm{8u}^{\mathrm{2}} +\mathrm{8}=\mathrm{65u} \\ $$$$\Rightarrow\mathrm{8u}^{\mathrm{2}} −\mathrm{65u}+\mathrm{8}=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{8u}−\mathrm{1}\right)\left(\mathrm{u}−\mathrm{8}\right)=\mathrm{0} \\ $$$$\begin{cases}{\mathrm{u}=\mathrm{8}\Rightarrow\left(\mathrm{ax}−\mathrm{b}\right)^{\mathrm{3}/\mathrm{7}} =\mathrm{2}^{\mathrm{3}} \Rightarrow\mathrm{ax}−\mathrm{b}=\mathrm{2}^{\mathrm{7}} }\\{\mathrm{u}=\frac{\mathrm{1}}{\mathrm{8}}\Rightarrow\left(\mathrm{ax}−\mathrm{b}\right)^{\mathrm{3}/\mathrm{7}} =\mathrm{2}^{−\mathrm{3}} \Rightarrow\mathrm{ax}−\mathrm{b}=\mathrm{2}^{−\mathrm{7}} }\end{cases} \\ $$

Commented by puissant last updated on 10/Aug/21

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com