Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 149670 by EDWIN88 last updated on 06/Aug/21

   Solve the equation     x=(√(a−(√(a+x)) )) where a>0 is    a parameter.

$$\:\:\:{Solve}\:{the}\:{equation}\: \\ $$ $$\:\:{x}=\sqrt{{a}−\sqrt{{a}+{x}}\:}\:{where}\:{a}>\mathrm{0}\:{is}\: \\ $$ $$\:{a}\:{parameter}. \\ $$

Answered by MJS_new last updated on 06/Aug/21

for a, x ∈R  it′s easy to see that  0≤x≤a(a−1)  ⇒ a≥1    x=(√(a−(√(a+x))))  squaring and transforming 2 times  (beware of false solutions!)  leads to  a^2 −(2x^2 +1)a+x(x^3 −1)=0  ⇒  a_1 =x^2 −x∨a_2 =x^2 +x+1  testing a_1 :  x=(√(x^2 −x−(√(x^2 −x+x))))  x=(√(x^2 −2x)) ⇒ x=0 ⇒ a=0  testing a_2 :  x=(√(x^2 +x+1−(√(x^2 +x+1+x))))  x=(√(x^2 +x+1−∣x+1∣))  x≥0 ⇒ x=(√x^2 ) always true  ⇒  a=x^2 +x+1 ⇔ x=−(1/2)±((√(4a−3))/2)  x≥0 ⇒  ★ x=−(1/2)+((√(4a−3))/2) ★

$$\mathrm{for}\:{a},\:{x}\:\in\mathbb{R} \\ $$ $$\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{see}\:\mathrm{that} \\ $$ $$\mathrm{0}\leqslant{x}\leqslant{a}\left({a}−\mathrm{1}\right) \\ $$ $$\Rightarrow\:{a}\geqslant\mathrm{1} \\ $$ $$ \\ $$ $${x}=\sqrt{{a}−\sqrt{{a}+{x}}} \\ $$ $$\mathrm{squaring}\:\mathrm{and}\:\mathrm{transforming}\:\mathrm{2}\:\mathrm{times} \\ $$ $$\left(\mathrm{beware}\:\mathrm{of}\:\mathrm{false}\:\mathrm{solutions}!\right) \\ $$ $$\mathrm{leads}\:\mathrm{to} \\ $$ $${a}^{\mathrm{2}} −\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right){a}+{x}\left({x}^{\mathrm{3}} −\mathrm{1}\right)=\mathrm{0} \\ $$ $$\Rightarrow \\ $$ $${a}_{\mathrm{1}} ={x}^{\mathrm{2}} −{x}\vee{a}_{\mathrm{2}} ={x}^{\mathrm{2}} +{x}+\mathrm{1} \\ $$ $$\mathrm{testing}\:{a}_{\mathrm{1}} : \\ $$ $${x}=\sqrt{{x}^{\mathrm{2}} −{x}−\sqrt{{x}^{\mathrm{2}} −{x}+{x}}} \\ $$ $${x}=\sqrt{{x}^{\mathrm{2}} −\mathrm{2}{x}}\:\Rightarrow\:{x}=\mathrm{0}\:\Rightarrow\:{a}=\mathrm{0} \\ $$ $$\mathrm{testing}\:{a}_{\mathrm{2}} : \\ $$ $${x}=\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}−\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}+{x}}} \\ $$ $${x}=\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}−\mid{x}+\mathrm{1}\mid} \\ $$ $${x}\geqslant\mathrm{0}\:\Rightarrow\:{x}=\sqrt{{x}^{\mathrm{2}} }\:\mathrm{always}\:\mathrm{true} \\ $$ $$\Rightarrow \\ $$ $${a}={x}^{\mathrm{2}} +{x}+\mathrm{1}\:\Leftrightarrow\:{x}=−\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{4}{a}−\mathrm{3}}}{\mathrm{2}} \\ $$ $${x}\geqslant\mathrm{0}\:\Rightarrow \\ $$ $$\bigstar\:{x}=−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{4}{a}−\mathrm{3}}}{\mathrm{2}}\:\bigstar \\ $$

Commented bymr W last updated on 07/Aug/21

great!

$${great}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com