Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 147487 by mnjuly1970 last updated on 21/Jul/21

    (a , 2a +1 ]∩[ a^( 2)  −a , a^( 2) + 4a +1 )≠ ∅                   a ∈ ?

$$ \\ $$$$ \\ $$$$\left({a}\:,\:\mathrm{2}{a}\:+\mathrm{1}\:\right]\cap\left[\:{a}^{\:\mathrm{2}} \:−{a}\:,\:{a}^{\:\mathrm{2}} +\:\mathrm{4}{a}\:+\mathrm{1}\:\right)\neq\:\varnothing \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}\:\in\:? \\ $$$$ \\ $$

Answered by Rasheed.Sindhi last updated on 21/Jul/21

• a<2a+1 ∧  a^2 −a<a^2 +4a+1       a>−1 ∧  a>−1/5⇒a>−1/5=−0.2  • 2a+1≥a^2 −a  [∵ Intersection is empty]      a^2 −3a−1≥0      a≥((3±(√(9+4)))/2)=((3±(√(13)))/2)        ∵ ((3−(√(13)))/2)≯−1/5   ∴ Rejected          ∴  a≥((3+(√(13)))/2)  a∈[((3+(√(13)))/2),∞)

$$\bullet\:{a}<\mathrm{2}{a}+\mathrm{1}\:\wedge\:\:{a}^{\mathrm{2}} −{a}<{a}^{\mathrm{2}} +\mathrm{4}{a}+\mathrm{1}\: \\ $$$$\:\:\:\:{a}>−\mathrm{1}\:\wedge\:\:{a}>−\mathrm{1}/\mathrm{5}\Rightarrow{a}>−\mathrm{1}/\mathrm{5}=−\mathrm{0}.\mathrm{2} \\ $$$$\bullet\:\mathrm{2}{a}+\mathrm{1}\geqslant{a}^{\mathrm{2}} −{a}\:\:\left[\because\:{Intersection}\:{is}\:{empty}\right] \\ $$$$\:\:\:\:{a}^{\mathrm{2}} −\mathrm{3}{a}−\mathrm{1}\geqslant\mathrm{0} \\ $$$$\:\:\:\:{a}\geqslant\frac{\mathrm{3}\pm\sqrt{\mathrm{9}+\mathrm{4}}}{\mathrm{2}}=\frac{\mathrm{3}\pm\sqrt{\mathrm{13}}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\because\:\frac{\mathrm{3}−\sqrt{\mathrm{13}}}{\mathrm{2}}\ngtr−\mathrm{1}/\mathrm{5}\:\:\:\therefore\:{Rejected} \\ $$$$\:\:\:\:\:\:\:\:\therefore\:\:{a}\geqslant\frac{\mathrm{3}+\sqrt{\mathrm{13}}}{\mathrm{2}} \\ $$$${a}\in\left[\frac{\mathrm{3}+\sqrt{\mathrm{13}}}{\mathrm{2}},\infty\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com