Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 147187 by mathdanisur last updated on 18/Jul/21

if  (xyz^(−) )^2  = (x+y+z)^5   then find:  x^3 +y^3 +z^3 −∣(x+y+z)+(x^2 +y^2 +z^2 )∣

$${if}\:\:\left(\overline {{xyz}}\right)^{\mathrm{2}} \:=\:\left({x}+{y}+{z}\right)^{\mathrm{5}} \:\:{then}\:{find}: \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} −\mid\left({x}+{y}+{z}\right)+\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)\mid \\ $$

Commented by Rasheed.Sindhi last updated on 18/Jul/21

Is xyz^(−)  a digital representation of  decimal number?

$${Is}\:\overline {{xyz}}\:{a}\:{digital}\:{representation}\:{of} \\ $$$${decimal}\:{number}? \\ $$

Commented by mathdanisur last updated on 18/Jul/21

Yes Ser

$${Yes}\:{Ser} \\ $$

Answered by Rasheed.Sindhi last updated on 19/Jul/21

 ( xyz ^(−) )^2 =(x+y+z)^5   ▶  xyz ^(−)  is 3-digit natural number  ▶  ( xyz ^(−) )^2  is perfect 5th power         ⇒ xyz ^(−)  is perfect  5th power  The only three digit number which  is also 5th power is 243(=3^5 )     [  2^5 =32  2-digit number ×           3^5 =243  3-digit number✓           4^5 =1024  4-digit number×   ]  Possible candidate is only 243 and  it also fulfills the given condition :     (243)^2 =^(?) (2+4+3)^5        (3^5 )^2 =^(?) 9^5       (3^5 )^2  =^(?) (3^2 )^5         3^(10) =3^(10)   ∴ 243 is only successful candidate.  ∴ x=2,y=4,z=3  x^3 +y^3 +z^3 −∣(x+y+z)+(x^2 +y^2 +z^2 )∣  =2^3 +4^3 +3^3 −∣(2+4+3)+(2^2 +3^2 +4^2 ∣  =8+64+27−∣9+29∣  =61

$$\:\left(\overline {\:{xyz}\:}\right)^{\mathrm{2}} =\left({x}+{y}+{z}\right)^{\mathrm{5}} \\ $$$$\blacktriangleright\:\overline {\:{xyz}\:}\:{is}\:\mathrm{3}-{digit}\:{natural}\:{number} \\ $$$$\blacktriangleright\:\:\left(\overline {\:{xyz}\:}\right)^{\mathrm{2}} \:{is}\:{perfect}\:\mathrm{5}{th}\:{power}\: \\ $$$$\:\:\:\:\:\:\Rightarrow\overline {\:{xyz}\:}\:{is}\:{perfect}\:\:\mathrm{5}{th}\:{power} \\ $$$${The}\:{only}\:{three}\:{digit}\:{number}\:{which} \\ $$$${is}\:{also}\:\mathrm{5}{th}\:{power}\:{is}\:\mathrm{243}\left(=\mathrm{3}^{\mathrm{5}} \right) \\ $$$$\:\:\:\left[\:\:\mathrm{2}^{\mathrm{5}} =\mathrm{32}\:\:\mathrm{2}-{digit}\:{number}\:×\right. \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{3}^{\mathrm{5}} =\mathrm{243}\:\:\mathrm{3}-{digit}\:{number}\checkmark \\ $$$$\left.\:\:\:\:\:\:\:\:\:\mathrm{4}^{\mathrm{5}} =\mathrm{1024}\:\:\mathrm{4}-{digit}\:{number}×\:\:\:\right] \\ $$$${Possible}\:{candidate}\:{is}\:{only}\:\mathrm{243}\:{and} \\ $$$${it}\:{also}\:{fulfills}\:{the}\:{given}\:{condition}\:: \\ $$$$\:\:\:\left(\mathrm{243}\right)^{\mathrm{2}} \overset{?} {=}\left(\mathrm{2}+\mathrm{4}+\mathrm{3}\right)^{\mathrm{5}} \\ $$$$\:\:\:\:\:\left(\mathrm{3}^{\mathrm{5}} \right)^{\mathrm{2}} \overset{?} {=}\mathrm{9}^{\mathrm{5}} \\ $$$$\:\:\:\:\left(\mathrm{3}^{\mathrm{5}} \right)^{\mathrm{2}} \:\overset{?} {=}\left(\mathrm{3}^{\mathrm{2}} \right)^{\mathrm{5}} \\ $$$$\:\:\:\:\:\:\mathrm{3}^{\mathrm{10}} =\mathrm{3}^{\mathrm{10}} \\ $$$$\therefore\:\mathrm{243}\:{is}\:{only}\:{successful}\:{candidate}. \\ $$$$\therefore\:{x}=\mathrm{2},{y}=\mathrm{4},{z}=\mathrm{3} \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} −\mid\left({x}+{y}+{z}\right)+\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)\mid \\ $$$$=\mathrm{2}^{\mathrm{3}} +\mathrm{4}^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} −\mid\left(\mathrm{2}+\mathrm{4}+\mathrm{3}\right)+\left(\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} \mid\right. \\ $$$$=\mathrm{8}+\mathrm{64}+\mathrm{27}−\mid\mathrm{9}+\mathrm{29}\mid \\ $$$$=\mathrm{61} \\ $$

Commented by mathdanisur last updated on 19/Jul/21

cool Ser thanks

$${cool}\:{Ser}\:{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com