Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 147149 by nadovic last updated on 18/Jul/21

 Two concurrent forces F_1  = 12N and   F_2  = 30N are 150° apart. Calculate    the angle between F_2  and the resultant   force.

$$\:\mathrm{Two}\:\mathrm{concurrent}\:\mathrm{forces}\:\boldsymbol{{F}}_{\mathrm{1}} \:=\:\mathrm{12N}\:\mathrm{and} \\ $$$$\:\boldsymbol{{F}}_{\mathrm{2}} \:=\:\mathrm{30N}\:\mathrm{are}\:\mathrm{150}°\:\mathrm{apart}.\:\mathrm{Calculate}\: \\ $$$$\:\mathrm{the}\:\mathrm{angle}\:\mathrm{between}\:\boldsymbol{{F}}_{\mathrm{2}} \:\mathrm{and}\:\mathrm{the}\:\mathrm{resultant} \\ $$$$\:\mathrm{force}. \\ $$

Answered by Olaf_Thorendsen last updated on 18/Jul/21

F_1 ^→  =  ((F_1 ),(0) )  F_2 ^→  =  (((F_2 cos150°)),((F_2 sin150°)) )  F^→  = F_1 ^→  + F_2 ^→   =  (((F_1 +F_2 cos150°)),((F_2 sin150°)) )  ∣∣F^→ ∣∣^2  = (F_1 +F_2 cos150°)^2 +F_2 ^2 sin^2 150°  ∣∣F^→ ∣∣^2  = (12+30cos150°)^2 +30^2 sin^2 150°  ∣∣F^→ ∣∣^2  ≈ 420,46  ∣∣F^→ ∣∣ ≈ 20,51 N    F_2 ^→ •F^(→)  = F_2 Fcos(F_2 ,F) ≈ 615,15cos(F_2 ,F)  F_2 ^→ •F^(→)  = F_2 cos150°(F_1 +F_2 cos150°)  +F_2 ^2 sin^2 150° ≈ 588,23  cos(F_2 ,F) = ((588,23)/(615,15)) = 0,956  ⇒ arg(F_2 ,F) = 17,01°

$$\overset{\rightarrow} {\mathrm{F}}_{\mathrm{1}} \:=\:\begin{pmatrix}{\mathrm{F}_{\mathrm{1}} }\\{\mathrm{0}}\end{pmatrix} \\ $$$$\overset{\rightarrow} {\mathrm{F}}_{\mathrm{2}} \:=\:\begin{pmatrix}{\mathrm{F}_{\mathrm{2}} \mathrm{cos150}°}\\{\mathrm{F}_{\mathrm{2}} \mathrm{sin150}°}\end{pmatrix} \\ $$$$\overset{\rightarrow} {\mathrm{F}}\:=\:\overset{\rightarrow} {\mathrm{F}}_{\mathrm{1}} \:+\:\overset{\rightarrow} {\mathrm{F}}_{\mathrm{2}} \:\:=\:\begin{pmatrix}{\mathrm{F}_{\mathrm{1}} +\mathrm{F}_{\mathrm{2}} \mathrm{cos150}°}\\{\mathrm{F}_{\mathrm{2}} \mathrm{sin150}°}\end{pmatrix} \\ $$$$\mid\mid\overset{\rightarrow} {\mathrm{F}}\mid\mid^{\mathrm{2}} \:=\:\left(\mathrm{F}_{\mathrm{1}} +\mathrm{F}_{\mathrm{2}} \mathrm{cos150}°\right)^{\mathrm{2}} +\mathrm{F}_{\mathrm{2}} ^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \mathrm{150}° \\ $$$$\mid\mid\overset{\rightarrow} {\mathrm{F}}\mid\mid^{\mathrm{2}} \:=\:\left(\mathrm{12}+\mathrm{30cos150}°\right)^{\mathrm{2}} +\mathrm{30}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \mathrm{150}° \\ $$$$\mid\mid\overset{\rightarrow} {\mathrm{F}}\mid\mid^{\mathrm{2}} \:\approx\:\mathrm{420},\mathrm{46} \\ $$$$\mid\mid\overset{\rightarrow} {\mathrm{F}}\mid\mid\:\approx\:\mathrm{20},\mathrm{51}\:\mathrm{N} \\ $$$$ \\ $$$$\overset{\rightarrow} {\mathrm{F}}_{\mathrm{2}} \bullet\overset{\rightarrow} {\mathrm{F}}\:=\:\mathrm{F}_{\mathrm{2}} \mathrm{Fcos}\left(\mathrm{F}_{\mathrm{2}} ,\mathrm{F}\right)\:\approx\:\mathrm{615},\mathrm{15cos}\left(\mathrm{F}_{\mathrm{2}} ,\mathrm{F}\right) \\ $$$$\overset{\rightarrow} {\mathrm{F}}_{\mathrm{2}} \bullet\overset{\rightarrow} {\mathrm{F}}\:=\:\mathrm{F}_{\mathrm{2}} \mathrm{cos150}°\left(\mathrm{F}_{\mathrm{1}} +\mathrm{F}_{\mathrm{2}} \mathrm{cos150}°\right) \\ $$$$+\mathrm{F}_{\mathrm{2}} ^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \mathrm{150}°\:\approx\:\mathrm{588},\mathrm{23} \\ $$$$\mathrm{cos}\left(\mathrm{F}_{\mathrm{2}} ,\mathrm{F}\right)\:=\:\frac{\mathrm{588},\mathrm{23}}{\mathrm{615},\mathrm{15}}\:=\:\mathrm{0},\mathrm{956} \\ $$$$\Rightarrow\:\mathrm{arg}\left(\mathrm{F}_{\mathrm{2}} ,\mathrm{F}\right)\:=\:\mathrm{17},\mathrm{01}° \\ $$

Commented by nadovic last updated on 18/Jul/21

Thank you Sir

$${Thank}\:{you}\:{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com