Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 147144 by gsk2684 last updated on 18/Jul/21

prove that   equation of a circle passing through  the points of intersection of a circle  S=0 and a line L=0 can be taken as  S+λL=0 where λ is a parameter

$${prove}\:{that}\: \\ $$$${equation}\:{of}\:{a}\:{circle}\:{passing}\:{through} \\ $$$${the}\:{points}\:{of}\:{intersection}\:{of}\:{a}\:{circle} \\ $$$${S}=\mathrm{0}\:{and}\:{a}\:{line}\:{L}=\mathrm{0}\:{can}\:{be}\:{taken}\:{as} \\ $$$${S}+\lambda{L}=\mathrm{0}\:{where}\:\lambda\:{is}\:{a}\:{parameter} \\ $$

Answered by mr W last updated on 18/Jul/21

say intersection at (a,b)  S(a,b)=0  L(a,b)=0  S(a,b)+λL(a,b)=0  ⇒S(x,y)+λL(x,y)=0 is a circle  passing through (a,b).

$${say}\:{intersection}\:{at}\:\left({a},{b}\right) \\ $$$${S}\left({a},{b}\right)=\mathrm{0} \\ $$$${L}\left({a},{b}\right)=\mathrm{0} \\ $$$${S}\left({a},{b}\right)+\lambda{L}\left({a},{b}\right)=\mathrm{0} \\ $$$$\Rightarrow{S}\left({x},{y}\right)+\lambda{L}\left({x},{y}\right)=\mathrm{0}\:{is}\:{a}\:{circle} \\ $$$${passing}\:{through}\:\left({a},{b}\right). \\ $$

Commented by gsk2684 last updated on 20/Jul/21

ofcourse when two curves intersect   at a point P  then it satifies both   the equation.   i need to know how can we prove   that general form represent a circle?

$${ofcourse}\:{when}\:{two}\:{curves}\:{intersect}\: \\ $$$${at}\:{a}\:{point}\:{P}\:\:{then}\:{it}\:{satifies}\:{both}\: \\ $$$${the}\:{equation}.\: \\ $$$${i}\:{need}\:{to}\:{know}\:{how}\:{can}\:{we}\:{prove}\: \\ $$$${that}\:{general}\:{form}\:{represent}\:{a}\:{circle}? \\ $$

Commented by mr W last updated on 20/Jul/21

if S(x,y)=0 is a circle, then  S(x,y)=Ax^2 +Bx+Ay^2 +Cy+D=0    is L(x,y)=0 is a line, then  L(x,y)=Kx+Hy+G=0    S(x,y)+λL(x,y)=0  Ax^2 +(B+λK)x+Ay^2 +(C+λH)y+D+λG=0  this is also a circle.

$${if}\:{S}\left({x},{y}\right)=\mathrm{0}\:{is}\:{a}\:{circle},\:{then} \\ $$$${S}\left({x},{y}\right)={Ax}^{\mathrm{2}} +{Bx}+{Ay}^{\mathrm{2}} +{Cy}+{D}=\mathrm{0} \\ $$$$ \\ $$$${is}\:{L}\left({x},{y}\right)=\mathrm{0}\:{is}\:{a}\:{line},\:{then} \\ $$$${L}\left({x},{y}\right)={Kx}+{Hy}+{G}=\mathrm{0} \\ $$$$ \\ $$$${S}\left({x},{y}\right)+\lambda{L}\left({x},{y}\right)=\mathrm{0} \\ $$$${Ax}^{\mathrm{2}} +\left({B}+\lambda{K}\right){x}+{Ay}^{\mathrm{2}} +\left({C}+\lambda{H}\right){y}+{D}+\lambda{G}=\mathrm{0} \\ $$$${this}\:{is}\:{also}\:{a}\:{circle}. \\ $$

Commented by gsk2684 last updated on 21/Jul/21

condition that the equation   ax^2 +ay^2 +2gx+2fy+c=0 represent  a circle is g^2 +f^2 −ac ≥ 0 ∵radius ≥0  i would like to verify the condition   (((B+λK)/2))^2 +(((C+λH)/2))^2 −A(D+λG) ≥0  consider   (((B+λK)/2))^2 +(((C+λH)/2))^2 −A(D+λG)  [((B/2))^2 +((C/2))^2 −AD]+λ(BK+CH−AG)+((λ^2 (K^2 +H^2 ))/4)  some confusion to proceed from this

$${condition}\:{that}\:{the}\:{equation}\: \\ $$$${ax}^{\mathrm{2}} +{ay}^{\mathrm{2}} +\mathrm{2}{gx}+\mathrm{2}{fy}+{c}=\mathrm{0}\:{represent} \\ $$$${a}\:{circle}\:{is}\:{g}^{\mathrm{2}} +{f}^{\mathrm{2}} −{ac}\:\geqslant\:\mathrm{0}\:\because{radius}\:\geqslant\mathrm{0} \\ $$$${i}\:{would}\:{like}\:{to}\:{verify}\:{the}\:{condition}\: \\ $$$$\left(\frac{{B}+\lambda{K}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{C}+\lambda{H}}{\mathrm{2}}\right)^{\mathrm{2}} −{A}\left({D}+\lambda{G}\right)\:\geqslant\mathrm{0} \\ $$$${consider}\: \\ $$$$\left(\frac{{B}+\lambda{K}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{C}+\lambda{H}}{\mathrm{2}}\right)^{\mathrm{2}} −{A}\left({D}+\lambda{G}\right) \\ $$$$\left[\left(\frac{{B}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{C}}{\mathrm{2}}\right)^{\mathrm{2}} −{AD}\right]+\lambda\left({BK}+{CH}−{AG}\right)+\frac{\lambda^{\mathrm{2}} \left({K}^{\mathrm{2}} +{H}^{\mathrm{2}} \right)}{\mathrm{4}} \\ $$$${some}\:{confusion}\:{to}\:{proceed}\:{from}\:{this}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com