Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 144914 by bobhans last updated on 30/Jun/21

 If ((1+tan 4(√θ))/(1−tan 4(√θ))) = tan θ , then find possible  value of tan (θ+11(√θ) ).

$$\:\mathrm{If}\:\frac{\mathrm{1}+\mathrm{tan}\:\mathrm{4}\sqrt{\theta}}{\mathrm{1}−\mathrm{tan}\:\mathrm{4}\sqrt{\theta}}\:=\:\mathrm{tan}\:\theta\:,\:\mathrm{then}\:\mathrm{find}\:\mathrm{possible} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{tan}\:\left(\theta+\mathrm{11}\sqrt{\theta}\:\right). \\ $$

Answered by imjagoll last updated on 30/Jun/21

Answered by mr W last updated on 30/Jun/21

 ((tan (π/4)+tan 4(√θ))/(1−tan (π/4)×tan 4(√θ))) = tan θ   tan ((π/4)+4(√θ)) = tan θ   kπ+(π/4)+4(√θ) = θ   kπ+(π/4)+4=((√θ)−2)^2   (√θ)=2+(√(kπ+(π/4)+4))  ⇒k≥−1  (√θ)=2−(√(kπ+(π/4)+4))  ⇒k=−1    θ+11(√θ)= kπ+(π/4)+15(√θ)  θ+11(√θ)= kπ+(π/4)+30±15(√(kπ+(π/4)+4))  ⇒tan (θ+11(√θ))= tan ((π/4)+30+15(√(kπ+(π/4)+4))) with k≥−1  or   ⇒tan (θ+11(√θ))= tan ((π/4)+30−15(√(−π+(π/4)+4)))

$$\:\frac{\mathrm{tan}\:\frac{\pi}{\mathrm{4}}+\mathrm{tan}\:\mathrm{4}\sqrt{\theta}}{\mathrm{1}−\mathrm{tan}\:\frac{\pi}{\mathrm{4}}×\mathrm{tan}\:\mathrm{4}\sqrt{\theta}}\:=\:\mathrm{tan}\:\theta \\ $$$$\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}+\mathrm{4}\sqrt{\theta}\right)\:=\:\mathrm{tan}\:\theta \\ $$$$\:{k}\pi+\frac{\pi}{\mathrm{4}}+\mathrm{4}\sqrt{\theta}\:=\:\theta \\ $$$$\:{k}\pi+\frac{\pi}{\mathrm{4}}+\mathrm{4}=\left(\sqrt{\theta}−\mathrm{2}\right)^{\mathrm{2}} \\ $$$$\sqrt{\theta}=\mathrm{2}+\sqrt{{k}\pi+\frac{\pi}{\mathrm{4}}+\mathrm{4}} \\ $$$$\Rightarrow{k}\geqslant−\mathrm{1} \\ $$$$\sqrt{\theta}=\mathrm{2}−\sqrt{{k}\pi+\frac{\pi}{\mathrm{4}}+\mathrm{4}} \\ $$$$\Rightarrow{k}=−\mathrm{1} \\ $$$$ \\ $$$$\theta+\mathrm{11}\sqrt{\theta}=\:{k}\pi+\frac{\pi}{\mathrm{4}}+\mathrm{15}\sqrt{\theta} \\ $$$$\theta+\mathrm{11}\sqrt{\theta}=\:{k}\pi+\frac{\pi}{\mathrm{4}}+\mathrm{30}\pm\mathrm{15}\sqrt{{k}\pi+\frac{\pi}{\mathrm{4}}+\mathrm{4}} \\ $$$$\Rightarrow\mathrm{tan}\:\left(\theta+\mathrm{11}\sqrt{\theta}\right)=\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}+\mathrm{30}+\mathrm{15}\sqrt{{k}\pi+\frac{\pi}{\mathrm{4}}+\mathrm{4}}\right)\:{with}\:{k}\geqslant−\mathrm{1} \\ $$$${or}\: \\ $$$$\Rightarrow\mathrm{tan}\:\left(\theta+\mathrm{11}\sqrt{\theta}\right)=\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}+\mathrm{30}−\mathrm{15}\sqrt{−\pi+\frac{\pi}{\mathrm{4}}+\mathrm{4}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com